# Extensions 1→N→G→Q→1 with N=C3×C72 and Q=C2

Direct product G=N×Q with N=C3×C72 and Q=C2
dρLabelID
C6×C72432C6xC72432,209

Semidirect products G=N:Q with N=C3×C72 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C72)⋊1C2 = S3×C72φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):1C2432,109
(C3×C72)⋊2C2 = C3×D72φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):2C2432,108
(C3×C72)⋊3C2 = C721S3φ: C2/C1C2 ⊆ Aut C3×C72216(C3xC72):3C2432,172
(C3×C72)⋊4C2 = C3×C72⋊C2φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):4C2432,107
(C3×C72)⋊5C2 = C24⋊D9φ: C2/C1C2 ⊆ Aut C3×C72216(C3xC72):5C2432,171
(C3×C72)⋊6C2 = D9×C24φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):6C2432,105
(C3×C72)⋊7C2 = C3×C8⋊D9φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):7C2432,106
(C3×C72)⋊8C2 = C8×C9⋊S3φ: C2/C1C2 ⊆ Aut C3×C72216(C3xC72):8C2432,169
(C3×C72)⋊9C2 = C72⋊S3φ: C2/C1C2 ⊆ Aut C3×C72216(C3xC72):9C2432,170
(C3×C72)⋊10C2 = C9×D24φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):10C2432,112
(C3×C72)⋊11C2 = D8×C3×C9φ: C2/C1C2 ⊆ Aut C3×C72216(C3xC72):11C2432,215
(C3×C72)⋊12C2 = C9×C24⋊C2φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):12C2432,111
(C3×C72)⋊13C2 = SD16×C3×C9φ: C2/C1C2 ⊆ Aut C3×C72216(C3xC72):13C2432,218
(C3×C72)⋊14C2 = C9×C8⋊S3φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72):14C2432,110
(C3×C72)⋊15C2 = M4(2)×C3×C9φ: C2/C1C2 ⊆ Aut C3×C72216(C3xC72):15C2432,212

Non-split extensions G=N.Q with N=C3×C72 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C72).1C2 = C9×C3⋊C16φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72).1C2432,29
(C3×C72).2C2 = C3×Dic36φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72).2C2432,104
(C3×C72).3C2 = C24.D9φ: C2/C1C2 ⊆ Aut C3×C72432(C3xC72).3C2432,168
(C3×C72).4C2 = C3×C9⋊C16φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72).4C2432,28
(C3×C72).5C2 = C72.S3φ: C2/C1C2 ⊆ Aut C3×C72432(C3xC72).5C2432,32
(C3×C72).6C2 = C9×Dic12φ: C2/C1C2 ⊆ Aut C3×C721442(C3xC72).6C2432,113
(C3×C72).7C2 = Q16×C3×C9φ: C2/C1C2 ⊆ Aut C3×C72432(C3xC72).7C2432,221

׿
×
𝔽