Copied to
clipboard

G = C9×Dic12order 432 = 24·33

Direct product of C9 and Dic12

direct product, metacyclic, supersoluble, monomial

Aliases: C9×Dic12, C72.9S3, C24.1C18, C36.73D6, C18.21D12, Dic6.1C18, C8.(S3×C9), (C3×C9)⋊4Q16, C31(C9×Q16), C6.3(D4×C9), (C3×C72).6C2, C2.5(C9×D12), C4.10(S3×C18), C24.12(C3×S3), (C3×C24).13C6, C6.33(C3×D12), (C3×C18).21D4, (C3×Dic12).C3, C12.108(S3×C6), C12.10(C2×C18), (C9×Dic6).3C2, (C3×Dic6).9C6, C3.4(C3×Dic12), C32.2(C3×Q16), (C3×C36).75C22, (C3×C6).41(C3×D4), (C3×C12).79(C2×C6), SmallGroup(432,113)

Series: Derived Chief Lower central Upper central

C1C12 — C9×Dic12
C1C3C6C3×C6C3×C12C3×C36C9×Dic6 — C9×Dic12
C3C6C12 — C9×Dic12
C1C18C36C72

Generators and relations for C9×Dic12
 G = < a,b,c | a9=b24=1, c2=b12, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 124 in 62 conjugacy classes, 33 normal (27 characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C9, C9, C32, Dic3, C12, C12, Q16, C18, C18, C3×C6, C24, C24, Dic6, C3×Q8, C3×C9, C36, C36, C3×Dic3, C3×C12, Dic12, C3×Q16, C3×C18, C72, C72, Q8×C9, C3×C24, C3×Dic6, C9×Dic3, C3×C36, C9×Q16, C3×Dic12, C3×C72, C9×Dic6, C9×Dic12
Quotients: C1, C2, C3, C22, S3, C6, D4, C9, D6, C2×C6, Q16, C18, C3×S3, D12, C3×D4, C2×C18, S3×C6, Dic12, C3×Q16, S3×C9, D4×C9, C3×D12, S3×C18, C9×Q16, C3×Dic12, C9×D12, C9×Dic12

Smallest permutation representation of C9×Dic12
On 144 points
Generators in S144
(1 126 37 9 134 45 17 142 29)(2 127 38 10 135 46 18 143 30)(3 128 39 11 136 47 19 144 31)(4 129 40 12 137 48 20 121 32)(5 130 41 13 138 25 21 122 33)(6 131 42 14 139 26 22 123 34)(7 132 43 15 140 27 23 124 35)(8 133 44 16 141 28 24 125 36)(49 87 120 65 79 112 57 95 104)(50 88 97 66 80 113 58 96 105)(51 89 98 67 81 114 59 73 106)(52 90 99 68 82 115 60 74 107)(53 91 100 69 83 116 61 75 108)(54 92 101 70 84 117 62 76 109)(55 93 102 71 85 118 63 77 110)(56 94 103 72 86 119 64 78 111)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 65 13 53)(2 64 14 52)(3 63 15 51)(4 62 16 50)(5 61 17 49)(6 60 18 72)(7 59 19 71)(8 58 20 70)(9 57 21 69)(10 56 22 68)(11 55 23 67)(12 54 24 66)(25 100 37 112)(26 99 38 111)(27 98 39 110)(28 97 40 109)(29 120 41 108)(30 119 42 107)(31 118 43 106)(32 117 44 105)(33 116 45 104)(34 115 46 103)(35 114 47 102)(36 113 48 101)(73 144 85 132)(74 143 86 131)(75 142 87 130)(76 141 88 129)(77 140 89 128)(78 139 90 127)(79 138 91 126)(80 137 92 125)(81 136 93 124)(82 135 94 123)(83 134 95 122)(84 133 96 121)

G:=sub<Sym(144)| (1,126,37,9,134,45,17,142,29)(2,127,38,10,135,46,18,143,30)(3,128,39,11,136,47,19,144,31)(4,129,40,12,137,48,20,121,32)(5,130,41,13,138,25,21,122,33)(6,131,42,14,139,26,22,123,34)(7,132,43,15,140,27,23,124,35)(8,133,44,16,141,28,24,125,36)(49,87,120,65,79,112,57,95,104)(50,88,97,66,80,113,58,96,105)(51,89,98,67,81,114,59,73,106)(52,90,99,68,82,115,60,74,107)(53,91,100,69,83,116,61,75,108)(54,92,101,70,84,117,62,76,109)(55,93,102,71,85,118,63,77,110)(56,94,103,72,86,119,64,78,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,65,13,53)(2,64,14,52)(3,63,15,51)(4,62,16,50)(5,61,17,49)(6,60,18,72)(7,59,19,71)(8,58,20,70)(9,57,21,69)(10,56,22,68)(11,55,23,67)(12,54,24,66)(25,100,37,112)(26,99,38,111)(27,98,39,110)(28,97,40,109)(29,120,41,108)(30,119,42,107)(31,118,43,106)(32,117,44,105)(33,116,45,104)(34,115,46,103)(35,114,47,102)(36,113,48,101)(73,144,85,132)(74,143,86,131)(75,142,87,130)(76,141,88,129)(77,140,89,128)(78,139,90,127)(79,138,91,126)(80,137,92,125)(81,136,93,124)(82,135,94,123)(83,134,95,122)(84,133,96,121)>;

G:=Group( (1,126,37,9,134,45,17,142,29)(2,127,38,10,135,46,18,143,30)(3,128,39,11,136,47,19,144,31)(4,129,40,12,137,48,20,121,32)(5,130,41,13,138,25,21,122,33)(6,131,42,14,139,26,22,123,34)(7,132,43,15,140,27,23,124,35)(8,133,44,16,141,28,24,125,36)(49,87,120,65,79,112,57,95,104)(50,88,97,66,80,113,58,96,105)(51,89,98,67,81,114,59,73,106)(52,90,99,68,82,115,60,74,107)(53,91,100,69,83,116,61,75,108)(54,92,101,70,84,117,62,76,109)(55,93,102,71,85,118,63,77,110)(56,94,103,72,86,119,64,78,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,65,13,53)(2,64,14,52)(3,63,15,51)(4,62,16,50)(5,61,17,49)(6,60,18,72)(7,59,19,71)(8,58,20,70)(9,57,21,69)(10,56,22,68)(11,55,23,67)(12,54,24,66)(25,100,37,112)(26,99,38,111)(27,98,39,110)(28,97,40,109)(29,120,41,108)(30,119,42,107)(31,118,43,106)(32,117,44,105)(33,116,45,104)(34,115,46,103)(35,114,47,102)(36,113,48,101)(73,144,85,132)(74,143,86,131)(75,142,87,130)(76,141,88,129)(77,140,89,128)(78,139,90,127)(79,138,91,126)(80,137,92,125)(81,136,93,124)(82,135,94,123)(83,134,95,122)(84,133,96,121) );

G=PermutationGroup([[(1,126,37,9,134,45,17,142,29),(2,127,38,10,135,46,18,143,30),(3,128,39,11,136,47,19,144,31),(4,129,40,12,137,48,20,121,32),(5,130,41,13,138,25,21,122,33),(6,131,42,14,139,26,22,123,34),(7,132,43,15,140,27,23,124,35),(8,133,44,16,141,28,24,125,36),(49,87,120,65,79,112,57,95,104),(50,88,97,66,80,113,58,96,105),(51,89,98,67,81,114,59,73,106),(52,90,99,68,82,115,60,74,107),(53,91,100,69,83,116,61,75,108),(54,92,101,70,84,117,62,76,109),(55,93,102,71,85,118,63,77,110),(56,94,103,72,86,119,64,78,111)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,65,13,53),(2,64,14,52),(3,63,15,51),(4,62,16,50),(5,61,17,49),(6,60,18,72),(7,59,19,71),(8,58,20,70),(9,57,21,69),(10,56,22,68),(11,55,23,67),(12,54,24,66),(25,100,37,112),(26,99,38,111),(27,98,39,110),(28,97,40,109),(29,120,41,108),(30,119,42,107),(31,118,43,106),(32,117,44,105),(33,116,45,104),(34,115,46,103),(35,114,47,102),(36,113,48,101),(73,144,85,132),(74,143,86,131),(75,142,87,130),(76,141,88,129),(77,140,89,128),(78,139,90,127),(79,138,91,126),(80,137,92,125),(81,136,93,124),(82,135,94,123),(83,134,95,122),(84,133,96,121)]])

135 conjugacy classes

class 1  2 3A3B3C3D3E4A4B4C6A6B6C6D6E8A8B9A···9F9G···9L12A···12H12I12J12K12L18A···18F18G···18L24A···24P36A···36R36S···36AD72A···72AJ
order123333344466666889···99···912···121212121218···1818···1824···2436···3636···3672···72
size11112222121211222221···12···22···2121212121···12···22···22···212···122···2

135 irreducible representations

dim111111111222222222222222222
type++++++-+-
imageC1C2C2C3C6C6C9C18C18S3D4D6Q16C3×S3D12C3×D4S3×C6Dic12C3×Q16S3×C9D4×C9C3×D12S3×C18C9×Q16C3×Dic12C9×D12C9×Dic12
kernelC9×Dic12C3×C72C9×Dic6C3×Dic12C3×C24C3×Dic6Dic12C24Dic6C72C3×C18C36C3×C9C24C18C3×C6C12C9C32C8C6C6C4C3C3C2C1
# reps1122246612111222224466461281224

Matrix representation of C9×Dic12 in GL2(𝔽73) generated by

20
02
,
560
030
,
01
720
G:=sub<GL(2,GF(73))| [2,0,0,2],[56,0,0,30],[0,72,1,0] >;

C9×Dic12 in GAP, Magma, Sage, TeX

C_9\times {\rm Dic}_{12}
% in TeX

G:=Group("C9xDic12");
// GroupNames label

G:=SmallGroup(432,113);
// by ID

G=gap.SmallGroup(432,113);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-3,-2,-3,504,197,596,142,2355,192,14118]);
// Polycyclic

G:=Group<a,b,c|a^9=b^24=1,c^2=b^12,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽