Copied to
clipboard

G = D9×C24order 432 = 24·33

Direct product of C24 and D9

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D9×C24, C7211C6, D18.4C12, C12.75D18, Dic9.4C12, C9⋊C813C6, (C3×C72)⋊6C2, C94(C2×C24), C6.5(S3×C12), C3.1(S3×C24), (C6×D9).4C4, (C4×D9).6C6, C6.21(C4×D9), C2.1(C12×D9), C4.12(C6×D9), C24.17(C3×S3), C12.84(S3×C6), C36.35(C2×C6), (C3×C24).22S3, (C12×D9).6C2, C32.4(S3×C8), C18.15(C2×C12), (C3×C12).212D6, (C3×Dic9).4C4, (C3×C36).65C22, (C3×C9)⋊5(C2×C8), (C3×C9⋊C8)⋊13C2, (C3×C6).63(C4×S3), (C3×C18).18(C2×C4), SmallGroup(432,105)

Series: Derived Chief Lower central Upper central

C1C9 — D9×C24
C1C3C9C18C36C3×C36C12×D9 — D9×C24
C9 — D9×C24
C1C24

Generators and relations for D9×C24
 G = < a,b,c | a24=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 222 in 74 conjugacy classes, 38 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, D9, C18, C18, C3×S3, C3×C6, C3⋊C8, C24, C24, C4×S3, C2×C12, C3×C9, Dic9, C36, C36, D18, C3×Dic3, C3×C12, S3×C6, S3×C8, C2×C24, C3×D9, C3×C18, C9⋊C8, C72, C72, C4×D9, C3×C3⋊C8, C3×C24, S3×C12, C3×Dic9, C3×C36, C6×D9, C8×D9, S3×C24, C3×C9⋊C8, C3×C72, C12×D9, D9×C24
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, C12, D6, C2×C6, C2×C8, D9, C3×S3, C24, C4×S3, C2×C12, D18, S3×C6, S3×C8, C2×C24, C3×D9, C4×D9, S3×C12, C6×D9, C8×D9, S3×C24, C12×D9, D9×C24

Smallest permutation representation of D9×C24
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 104 130 9 112 138 17 120 122)(2 105 131 10 113 139 18 97 123)(3 106 132 11 114 140 19 98 124)(4 107 133 12 115 141 20 99 125)(5 108 134 13 116 142 21 100 126)(6 109 135 14 117 143 22 101 127)(7 110 136 15 118 144 23 102 128)(8 111 137 16 119 121 24 103 129)(25 86 66 41 78 58 33 94 50)(26 87 67 42 79 59 34 95 51)(27 88 68 43 80 60 35 96 52)(28 89 69 44 81 61 36 73 53)(29 90 70 45 82 62 37 74 54)(30 91 71 46 83 63 38 75 55)(31 92 72 47 84 64 39 76 56)(32 93 49 48 85 65 40 77 57)
(1 82)(2 83)(3 84)(4 85)(5 86)(6 87)(7 88)(8 89)(9 90)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 73)(17 74)(18 75)(19 76)(20 77)(21 78)(22 79)(23 80)(24 81)(25 108)(26 109)(27 110)(28 111)(29 112)(30 113)(31 114)(32 115)(33 116)(34 117)(35 118)(36 119)(37 120)(38 97)(39 98)(40 99)(41 100)(42 101)(43 102)(44 103)(45 104)(46 105)(47 106)(48 107)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 139)(56 140)(57 141)(58 142)(59 143)(60 144)(61 121)(62 122)(63 123)(64 124)(65 125)(66 126)(67 127)(68 128)(69 129)(70 130)(71 131)(72 132)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,104,130,9,112,138,17,120,122)(2,105,131,10,113,139,18,97,123)(3,106,132,11,114,140,19,98,124)(4,107,133,12,115,141,20,99,125)(5,108,134,13,116,142,21,100,126)(6,109,135,14,117,143,22,101,127)(7,110,136,15,118,144,23,102,128)(8,111,137,16,119,121,24,103,129)(25,86,66,41,78,58,33,94,50)(26,87,67,42,79,59,34,95,51)(27,88,68,43,80,60,35,96,52)(28,89,69,44,81,61,36,73,53)(29,90,70,45,82,62,37,74,54)(30,91,71,46,83,63,38,75,55)(31,92,72,47,84,64,39,76,56)(32,93,49,48,85,65,40,77,57), (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,73)(17,74)(18,75)(19,76)(20,77)(21,78)(22,79)(23,80)(24,81)(25,108)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,97)(39,98)(40,99)(41,100)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,141)(58,142)(59,143)(60,144)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,104,130,9,112,138,17,120,122)(2,105,131,10,113,139,18,97,123)(3,106,132,11,114,140,19,98,124)(4,107,133,12,115,141,20,99,125)(5,108,134,13,116,142,21,100,126)(6,109,135,14,117,143,22,101,127)(7,110,136,15,118,144,23,102,128)(8,111,137,16,119,121,24,103,129)(25,86,66,41,78,58,33,94,50)(26,87,67,42,79,59,34,95,51)(27,88,68,43,80,60,35,96,52)(28,89,69,44,81,61,36,73,53)(29,90,70,45,82,62,37,74,54)(30,91,71,46,83,63,38,75,55)(31,92,72,47,84,64,39,76,56)(32,93,49,48,85,65,40,77,57), (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,73)(17,74)(18,75)(19,76)(20,77)(21,78)(22,79)(23,80)(24,81)(25,108)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,97)(39,98)(40,99)(41,100)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,141)(58,142)(59,143)(60,144)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,104,130,9,112,138,17,120,122),(2,105,131,10,113,139,18,97,123),(3,106,132,11,114,140,19,98,124),(4,107,133,12,115,141,20,99,125),(5,108,134,13,116,142,21,100,126),(6,109,135,14,117,143,22,101,127),(7,110,136,15,118,144,23,102,128),(8,111,137,16,119,121,24,103,129),(25,86,66,41,78,58,33,94,50),(26,87,67,42,79,59,34,95,51),(27,88,68,43,80,60,35,96,52),(28,89,69,44,81,61,36,73,53),(29,90,70,45,82,62,37,74,54),(30,91,71,46,83,63,38,75,55),(31,92,72,47,84,64,39,76,56),(32,93,49,48,85,65,40,77,57)], [(1,82),(2,83),(3,84),(4,85),(5,86),(6,87),(7,88),(8,89),(9,90),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,73),(17,74),(18,75),(19,76),(20,77),(21,78),(22,79),(23,80),(24,81),(25,108),(26,109),(27,110),(28,111),(29,112),(30,113),(31,114),(32,115),(33,116),(34,117),(35,118),(36,119),(37,120),(38,97),(39,98),(40,99),(41,100),(42,101),(43,102),(44,103),(45,104),(46,105),(47,106),(48,107),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,139),(56,140),(57,141),(58,142),(59,143),(60,144),(61,121),(62,122),(63,123),(64,124),(65,125),(66,126),(67,127),(68,128),(69,129),(70,130),(71,131),(72,132)]])

144 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D6A6B6C6D6E6F6G6H6I8A8B8C8D8E8F8G8H9A···9I12A12B12C12D12E···12J12K12L12M12N18A···18I24A···24H24I···24T24U···24AB36A···36R72A···72AJ
order1222333334444666666666888888889···91212121212···121212121218···1824···2424···2424···2436···3672···72
size1199112221199112229999111199992···211112···299992···21···12···29···92···22···2

144 irreducible representations

dim111111111111112222222222222222
type++++++++
imageC1C2C2C2C3C4C4C6C6C6C8C12C12C24S3D6D9C3×S3C4×S3D18S3×C6S3×C8C3×D9C4×D9S3×C12C6×D9C8×D9S3×C24C12×D9D9×C24
kernelD9×C24C3×C9⋊C8C3×C72C12×D9C8×D9C3×Dic9C6×D9C9⋊C8C72C4×D9C3×D9Dic9D18D9C3×C24C3×C12C24C24C3×C6C12C12C32C8C6C6C4C3C3C2C1
# reps1111222222844161132232466461281224

Matrix representation of D9×C24 in GL2(𝔽73) generated by

210
021
,
20
1137
,
6168
1412
G:=sub<GL(2,GF(73))| [21,0,0,21],[2,11,0,37],[61,14,68,12] >;

D9×C24 in GAP, Magma, Sage, TeX

D_9\times C_{24}
% in TeX

G:=Group("D9xC24");
// GroupNames label

G:=SmallGroup(432,105);
// by ID

G=gap.SmallGroup(432,105);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,92,80,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^24=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽