Copied to
clipboard

G = C9×C24⋊C2order 432 = 24·33

Direct product of C9 and C24⋊C2

direct product, metacyclic, supersoluble, monomial

Aliases: C9×C24⋊C2, C726S3, C242C18, C36.71D6, Dic61C18, D12.1C18, C18.19D12, C82(S3×C9), C6.1(D4×C9), (C3×C9)⋊7SD16, (C3×C72)⋊12C2, C4.8(S3×C18), C31(C9×SD16), C2.3(C9×D12), C24.24(C3×S3), (C3×C24).15C6, C12.8(C2×C18), (C9×Dic6)⋊7C2, (C9×D12).3C2, (C3×D12).8C6, (C3×C18).19D4, C6.31(C3×D12), C12.106(S3×C6), (C3×Dic6).8C6, (C3×C36).73C22, C32.2(C3×SD16), (C3×C24⋊C2).C3, C3.4(C3×C24⋊C2), (C3×C6).39(C3×D4), (C3×C12).77(C2×C6), SmallGroup(432,111)

Series: Derived Chief Lower central Upper central

C1C12 — C9×C24⋊C2
C1C3C6C3×C6C3×C12C3×C36C9×D12 — C9×C24⋊C2
C3C6C12 — C9×C24⋊C2
C1C18C36C72

Generators and relations for C9×C24⋊C2
 G = < a,b,c | a9=b24=c2=1, ab=ba, ac=ca, cbc=b11 >

Subgroups: 172 in 68 conjugacy classes, 33 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, SD16, C18, C18, C3×S3, C3×C6, C24, C24, Dic6, D12, C3×D4, C3×Q8, C3×C9, C36, C36, C2×C18, C3×Dic3, C3×C12, S3×C6, C24⋊C2, C3×SD16, S3×C9, C3×C18, C72, C72, D4×C9, Q8×C9, C3×C24, C3×Dic6, C3×D12, C9×Dic3, C3×C36, S3×C18, C9×SD16, C3×C24⋊C2, C3×C72, C9×Dic6, C9×D12, C9×C24⋊C2
Quotients: C1, C2, C3, C22, S3, C6, D4, C9, D6, C2×C6, SD16, C18, C3×S3, D12, C3×D4, C2×C18, S3×C6, C24⋊C2, C3×SD16, S3×C9, D4×C9, C3×D12, S3×C18, C9×SD16, C3×C24⋊C2, C9×D12, C9×C24⋊C2

Smallest permutation representation of C9×C24⋊C2
On 144 points
Generators in S144
(1 103 42 9 111 26 17 119 34)(2 104 43 10 112 27 18 120 35)(3 105 44 11 113 28 19 97 36)(4 106 45 12 114 29 20 98 37)(5 107 46 13 115 30 21 99 38)(6 108 47 14 116 31 22 100 39)(7 109 48 15 117 32 23 101 40)(8 110 25 16 118 33 24 102 41)(49 73 140 65 89 132 57 81 124)(50 74 141 66 90 133 58 82 125)(51 75 142 67 91 134 59 83 126)(52 76 143 68 92 135 60 84 127)(53 77 144 69 93 136 61 85 128)(54 78 121 70 94 137 62 86 129)(55 79 122 71 95 138 63 87 130)(56 80 123 72 96 139 64 88 131)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 66)(2 53)(3 64)(4 51)(5 62)(6 49)(7 60)(8 71)(9 58)(10 69)(11 56)(12 67)(13 54)(14 65)(15 52)(16 63)(17 50)(18 61)(19 72)(20 59)(21 70)(22 57)(23 68)(24 55)(25 138)(26 125)(27 136)(28 123)(29 134)(30 121)(31 132)(32 143)(33 130)(34 141)(35 128)(36 139)(37 126)(38 137)(39 124)(40 135)(41 122)(42 133)(43 144)(44 131)(45 142)(46 129)(47 140)(48 127)(73 108)(74 119)(75 106)(76 117)(77 104)(78 115)(79 102)(80 113)(81 100)(82 111)(83 98)(84 109)(85 120)(86 107)(87 118)(88 105)(89 116)(90 103)(91 114)(92 101)(93 112)(94 99)(95 110)(96 97)

G:=sub<Sym(144)| (1,103,42,9,111,26,17,119,34)(2,104,43,10,112,27,18,120,35)(3,105,44,11,113,28,19,97,36)(4,106,45,12,114,29,20,98,37)(5,107,46,13,115,30,21,99,38)(6,108,47,14,116,31,22,100,39)(7,109,48,15,117,32,23,101,40)(8,110,25,16,118,33,24,102,41)(49,73,140,65,89,132,57,81,124)(50,74,141,66,90,133,58,82,125)(51,75,142,67,91,134,59,83,126)(52,76,143,68,92,135,60,84,127)(53,77,144,69,93,136,61,85,128)(54,78,121,70,94,137,62,86,129)(55,79,122,71,95,138,63,87,130)(56,80,123,72,96,139,64,88,131), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,66)(2,53)(3,64)(4,51)(5,62)(6,49)(7,60)(8,71)(9,58)(10,69)(11,56)(12,67)(13,54)(14,65)(15,52)(16,63)(17,50)(18,61)(19,72)(20,59)(21,70)(22,57)(23,68)(24,55)(25,138)(26,125)(27,136)(28,123)(29,134)(30,121)(31,132)(32,143)(33,130)(34,141)(35,128)(36,139)(37,126)(38,137)(39,124)(40,135)(41,122)(42,133)(43,144)(44,131)(45,142)(46,129)(47,140)(48,127)(73,108)(74,119)(75,106)(76,117)(77,104)(78,115)(79,102)(80,113)(81,100)(82,111)(83,98)(84,109)(85,120)(86,107)(87,118)(88,105)(89,116)(90,103)(91,114)(92,101)(93,112)(94,99)(95,110)(96,97)>;

G:=Group( (1,103,42,9,111,26,17,119,34)(2,104,43,10,112,27,18,120,35)(3,105,44,11,113,28,19,97,36)(4,106,45,12,114,29,20,98,37)(5,107,46,13,115,30,21,99,38)(6,108,47,14,116,31,22,100,39)(7,109,48,15,117,32,23,101,40)(8,110,25,16,118,33,24,102,41)(49,73,140,65,89,132,57,81,124)(50,74,141,66,90,133,58,82,125)(51,75,142,67,91,134,59,83,126)(52,76,143,68,92,135,60,84,127)(53,77,144,69,93,136,61,85,128)(54,78,121,70,94,137,62,86,129)(55,79,122,71,95,138,63,87,130)(56,80,123,72,96,139,64,88,131), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,66)(2,53)(3,64)(4,51)(5,62)(6,49)(7,60)(8,71)(9,58)(10,69)(11,56)(12,67)(13,54)(14,65)(15,52)(16,63)(17,50)(18,61)(19,72)(20,59)(21,70)(22,57)(23,68)(24,55)(25,138)(26,125)(27,136)(28,123)(29,134)(30,121)(31,132)(32,143)(33,130)(34,141)(35,128)(36,139)(37,126)(38,137)(39,124)(40,135)(41,122)(42,133)(43,144)(44,131)(45,142)(46,129)(47,140)(48,127)(73,108)(74,119)(75,106)(76,117)(77,104)(78,115)(79,102)(80,113)(81,100)(82,111)(83,98)(84,109)(85,120)(86,107)(87,118)(88,105)(89,116)(90,103)(91,114)(92,101)(93,112)(94,99)(95,110)(96,97) );

G=PermutationGroup([[(1,103,42,9,111,26,17,119,34),(2,104,43,10,112,27,18,120,35),(3,105,44,11,113,28,19,97,36),(4,106,45,12,114,29,20,98,37),(5,107,46,13,115,30,21,99,38),(6,108,47,14,116,31,22,100,39),(7,109,48,15,117,32,23,101,40),(8,110,25,16,118,33,24,102,41),(49,73,140,65,89,132,57,81,124),(50,74,141,66,90,133,58,82,125),(51,75,142,67,91,134,59,83,126),(52,76,143,68,92,135,60,84,127),(53,77,144,69,93,136,61,85,128),(54,78,121,70,94,137,62,86,129),(55,79,122,71,95,138,63,87,130),(56,80,123,72,96,139,64,88,131)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,66),(2,53),(3,64),(4,51),(5,62),(6,49),(7,60),(8,71),(9,58),(10,69),(11,56),(12,67),(13,54),(14,65),(15,52),(16,63),(17,50),(18,61),(19,72),(20,59),(21,70),(22,57),(23,68),(24,55),(25,138),(26,125),(27,136),(28,123),(29,134),(30,121),(31,132),(32,143),(33,130),(34,141),(35,128),(36,139),(37,126),(38,137),(39,124),(40,135),(41,122),(42,133),(43,144),(44,131),(45,142),(46,129),(47,140),(48,127),(73,108),(74,119),(75,106),(76,117),(77,104),(78,115),(79,102),(80,113),(81,100),(82,111),(83,98),(84,109),(85,120),(86,107),(87,118),(88,105),(89,116),(90,103),(91,114),(92,101),(93,112),(94,99),(95,110),(96,97)]])

135 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B6A6B6C6D6E6F6G8A8B9A···9F9G···9L12A···12H12I12J18A···18F18G···18L18M···18R24A···24P36A···36R36S···36X72A···72AJ
order12233333446666666889···99···912···12121218···1818···1818···1824···2436···3636···3672···72
size111211222212112221212221···12···22···212121···12···212···122···22···212···122···2

135 irreducible representations

dim111111111111222222222222222222
type++++++++
imageC1C2C2C2C3C6C6C6C9C18C18C18S3D4D6SD16C3×S3D12C3×D4S3×C6C24⋊C2C3×SD16S3×C9D4×C9C3×D12S3×C18C9×SD16C3×C24⋊C2C9×D12C9×C24⋊C2
kernelC9×C24⋊C2C3×C72C9×Dic6C9×D12C3×C24⋊C2C3×C24C3×Dic6C3×D12C24⋊C2C24Dic6D12C72C3×C18C36C3×C9C24C18C3×C6C12C9C32C8C6C6C4C3C3C2C1
# reps111122226666111222224466461281224

Matrix representation of C9×C24⋊C2 in GL4(𝔽73) generated by

32000
03200
00640
00064
,
3000
04900
00667
0066
,
0100
1000
001616
001657
G:=sub<GL(4,GF(73))| [32,0,0,0,0,32,0,0,0,0,64,0,0,0,0,64],[3,0,0,0,0,49,0,0,0,0,6,6,0,0,67,6],[0,1,0,0,1,0,0,0,0,0,16,16,0,0,16,57] >;

C9×C24⋊C2 in GAP, Magma, Sage, TeX

C_9\times C_{24}\rtimes C_2
% in TeX

G:=Group("C9xC24:C2");
// GroupNames label

G:=SmallGroup(432,111);
// by ID

G=gap.SmallGroup(432,111);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-3,-2,-3,197,92,142,2355,192,14118]);
// Polycyclic

G:=Group<a,b,c|a^9=b^24=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^11>;
// generators/relations

׿
×
𝔽