Extensions 1→N→G→Q→1 with N=C2xHe3:C2 and Q=C4

Direct product G=NxQ with N=C2xHe3:C2 and Q=C4
dρLabelID
C2xC4xHe3:C272C2xC4xHe3:C2432,385

Semidirect products G=N:Q with N=C2xHe3:C2 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xHe3:C2):1C4 = C62.5D6φ: C4/C2C2 ⊆ Out C2xHe3:C272(C2xHe3:C2):1C4432,98
(C2xHe3:C2):2C4 = C62.31D6φ: C4/C2C2 ⊆ Out C2xHe3:C272(C2xHe3:C2):2C4432,189
(C2xHe3:C2):3C4 = C22:(He3:C4)φ: C4/C2C2 ⊆ Out C2xHe3:C2366(C2xHe3:C2):3C4432,279
(C2xHe3:C2):4C4 = C2xHe3:(C2xC4)φ: C4/C2C2 ⊆ Out C2xHe3:C272(C2xHe3:C2):4C4432,321
(C2xHe3:C2):5C4 = C22xHe3:C4φ: C4/C2C2 ⊆ Out C2xHe3:C272(C2xHe3:C2):5C4432,543

Non-split extensions G=N.Q with N=C2xHe3:C2 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xHe3:C2).C4 = C2xHe3:C8φ: C4/C1C4 ⊆ Out C2xHe3:C2546+(C2xHe3:C2).C4432,529
(C2xHe3:C2).2C4 = C12.89S32φ: C4/C2C2 ⊆ Out C2xHe3:C2726(C2xHe3:C2).2C4432,81
(C2xHe3:C2).3C4 = He3:3M4(2)φ: C4/C2C2 ⊆ Out C2xHe3:C2726(C2xHe3:C2).3C4432,82
(C2xHe3:C2).4C4 = He3:6M4(2)φ: C4/C2C2 ⊆ Out C2xHe3:C2726(C2xHe3:C2).4C4432,174
(C2xHe3:C2).5C4 = He3:2(C2xC8)φ: C4/C2C2 ⊆ Out C2xHe3:C2723(C2xHe3:C2).5C4432,273
(C2xHe3:C2).6C4 = He3:1M4(2)φ: C4/C2C2 ⊆ Out C2xHe3:C2726(C2xHe3:C2).6C4432,274
(C2xHe3:C2).7C4 = C8xHe3:C2φ: trivial image723(C2xHe3:C2).7C4432,173

׿
x
:
Z
F
o
wr
Q
<