Copied to
clipboard

G = C2×He3⋊(C2×C4)  order 432 = 24·33

Direct product of C2 and He3⋊(C2×C4)

direct product, non-abelian, supersoluble, monomial

Aliases: C2×He3⋊(C2×C4), C62.11D6, C3⋊Dic36D6, He34(C22×C4), C32⋊C127C22, C6.17(C6.D6), (C2×He3).15C23, C22.11(C32⋊D6), (C22×He3).11C22, C6.89(C2×S32), (C3×C6)⋊2(C4×S3), (C2×C6).56S32, C323(S3×C2×C4), (C2×He3)⋊3(C2×C4), (C2×C3⋊Dic3)⋊5S3, C2.3(C2×C32⋊D6), (C2×C32⋊C12)⋊8C2, (C2×He3⋊C2)⋊4C4, He3⋊C23(C2×C4), C3.2(C2×C6.D6), (C3×C6).15(C22×S3), (C22×He3⋊C2).4C2, (C2×He3⋊C2).16C22, SmallGroup(432,321)

Series: Derived Chief Lower central Upper central

C1C3He3 — C2×He3⋊(C2×C4)
C1C3C32He3C2×He3C32⋊C12He3⋊(C2×C4) — C2×He3⋊(C2×C4)
He3 — C2×He3⋊(C2×C4)
C1C22

Generators and relations for C2×He3⋊(C2×C4)
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e2=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=bc-1, ebe=b-1, bf=fb, cd=dc, ce=ec, fcf-1=c-1, ede=fdf-1=d-1, ef=fe >

Subgroups: 1083 in 221 conjugacy classes, 53 normal (11 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, D6, C2×C6, C2×C6, C22×C4, C3×S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, He3, C3×Dic3, C3⋊Dic3, S3×C6, C62, C62, S3×C2×C4, C22×Dic3, He3⋊C2, C2×He3, C2×He3, S3×Dic3, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C32⋊C12, C2×He3⋊C2, C22×He3, C2×S3×Dic3, He3⋊(C2×C4), C2×C32⋊C12, C22×He3⋊C2, C2×He3⋊(C2×C4)
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4×S3, C22×S3, S32, S3×C2×C4, C6.D6, C2×S32, C32⋊D6, C2×C6.D6, He3⋊(C2×C4), C2×C32⋊D6, C2×He3⋊(C2×C4)

Smallest permutation representation of C2×He3⋊(C2×C4)
On 72 points
Generators in S72
(1 41)(2 42)(3 43)(4 44)(5 23)(6 24)(7 21)(8 22)(9 36)(10 33)(11 34)(12 35)(13 37)(14 38)(15 39)(16 40)(17 46)(18 47)(19 48)(20 45)(25 69)(26 70)(27 71)(28 72)(29 68)(30 65)(31 66)(32 67)(49 62)(50 63)(51 64)(52 61)(53 59)(54 60)(55 57)(56 58)
(5 35 28)(6 36 25)(7 33 26)(8 34 27)(9 69 24)(10 70 21)(11 71 22)(12 72 23)(29 64 55)(30 61 56)(31 62 53)(32 63 54)(49 59 66)(50 60 67)(51 57 68)(52 58 65)
(1 19 37)(2 38 20)(3 17 39)(4 40 18)(5 28 35)(6 36 25)(7 26 33)(8 34 27)(9 69 24)(10 21 70)(11 71 22)(12 23 72)(13 41 48)(14 45 42)(15 43 46)(16 47 44)(29 64 55)(30 56 61)(31 62 53)(32 54 63)(49 59 66)(50 67 60)(51 57 68)(52 65 58)
(1 32 24)(2 21 29)(3 30 22)(4 23 31)(5 66 44)(6 41 67)(7 68 42)(8 43 65)(9 19 54)(10 55 20)(11 17 56)(12 53 18)(13 50 25)(14 26 51)(15 52 27)(16 28 49)(33 57 45)(34 46 58)(35 59 47)(36 48 60)(37 63 69)(38 70 64)(39 61 71)(40 72 62)
(1 41)(2 42)(3 43)(4 44)(5 31)(6 32)(7 29)(8 30)(9 60)(10 57)(11 58)(12 59)(13 37)(14 38)(15 39)(16 40)(17 46)(18 47)(19 48)(20 45)(21 68)(22 65)(23 66)(24 67)(25 63)(26 64)(27 61)(28 62)(33 55)(34 56)(35 53)(36 54)(49 72)(50 69)(51 70)(52 71)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)

G:=sub<Sym(72)| (1,41)(2,42)(3,43)(4,44)(5,23)(6,24)(7,21)(8,22)(9,36)(10,33)(11,34)(12,35)(13,37)(14,38)(15,39)(16,40)(17,46)(18,47)(19,48)(20,45)(25,69)(26,70)(27,71)(28,72)(29,68)(30,65)(31,66)(32,67)(49,62)(50,63)(51,64)(52,61)(53,59)(54,60)(55,57)(56,58), (5,35,28)(6,36,25)(7,33,26)(8,34,27)(9,69,24)(10,70,21)(11,71,22)(12,72,23)(29,64,55)(30,61,56)(31,62,53)(32,63,54)(49,59,66)(50,60,67)(51,57,68)(52,58,65), (1,19,37)(2,38,20)(3,17,39)(4,40,18)(5,28,35)(6,36,25)(7,26,33)(8,34,27)(9,69,24)(10,21,70)(11,71,22)(12,23,72)(13,41,48)(14,45,42)(15,43,46)(16,47,44)(29,64,55)(30,56,61)(31,62,53)(32,54,63)(49,59,66)(50,67,60)(51,57,68)(52,65,58), (1,32,24)(2,21,29)(3,30,22)(4,23,31)(5,66,44)(6,41,67)(7,68,42)(8,43,65)(9,19,54)(10,55,20)(11,17,56)(12,53,18)(13,50,25)(14,26,51)(15,52,27)(16,28,49)(33,57,45)(34,46,58)(35,59,47)(36,48,60)(37,63,69)(38,70,64)(39,61,71)(40,72,62), (1,41)(2,42)(3,43)(4,44)(5,31)(6,32)(7,29)(8,30)(9,60)(10,57)(11,58)(12,59)(13,37)(14,38)(15,39)(16,40)(17,46)(18,47)(19,48)(20,45)(21,68)(22,65)(23,66)(24,67)(25,63)(26,64)(27,61)(28,62)(33,55)(34,56)(35,53)(36,54)(49,72)(50,69)(51,70)(52,71), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)>;

G:=Group( (1,41)(2,42)(3,43)(4,44)(5,23)(6,24)(7,21)(8,22)(9,36)(10,33)(11,34)(12,35)(13,37)(14,38)(15,39)(16,40)(17,46)(18,47)(19,48)(20,45)(25,69)(26,70)(27,71)(28,72)(29,68)(30,65)(31,66)(32,67)(49,62)(50,63)(51,64)(52,61)(53,59)(54,60)(55,57)(56,58), (5,35,28)(6,36,25)(7,33,26)(8,34,27)(9,69,24)(10,70,21)(11,71,22)(12,72,23)(29,64,55)(30,61,56)(31,62,53)(32,63,54)(49,59,66)(50,60,67)(51,57,68)(52,58,65), (1,19,37)(2,38,20)(3,17,39)(4,40,18)(5,28,35)(6,36,25)(7,26,33)(8,34,27)(9,69,24)(10,21,70)(11,71,22)(12,23,72)(13,41,48)(14,45,42)(15,43,46)(16,47,44)(29,64,55)(30,56,61)(31,62,53)(32,54,63)(49,59,66)(50,67,60)(51,57,68)(52,65,58), (1,32,24)(2,21,29)(3,30,22)(4,23,31)(5,66,44)(6,41,67)(7,68,42)(8,43,65)(9,19,54)(10,55,20)(11,17,56)(12,53,18)(13,50,25)(14,26,51)(15,52,27)(16,28,49)(33,57,45)(34,46,58)(35,59,47)(36,48,60)(37,63,69)(38,70,64)(39,61,71)(40,72,62), (1,41)(2,42)(3,43)(4,44)(5,31)(6,32)(7,29)(8,30)(9,60)(10,57)(11,58)(12,59)(13,37)(14,38)(15,39)(16,40)(17,46)(18,47)(19,48)(20,45)(21,68)(22,65)(23,66)(24,67)(25,63)(26,64)(27,61)(28,62)(33,55)(34,56)(35,53)(36,54)(49,72)(50,69)(51,70)(52,71), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72) );

G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,23),(6,24),(7,21),(8,22),(9,36),(10,33),(11,34),(12,35),(13,37),(14,38),(15,39),(16,40),(17,46),(18,47),(19,48),(20,45),(25,69),(26,70),(27,71),(28,72),(29,68),(30,65),(31,66),(32,67),(49,62),(50,63),(51,64),(52,61),(53,59),(54,60),(55,57),(56,58)], [(5,35,28),(6,36,25),(7,33,26),(8,34,27),(9,69,24),(10,70,21),(11,71,22),(12,72,23),(29,64,55),(30,61,56),(31,62,53),(32,63,54),(49,59,66),(50,60,67),(51,57,68),(52,58,65)], [(1,19,37),(2,38,20),(3,17,39),(4,40,18),(5,28,35),(6,36,25),(7,26,33),(8,34,27),(9,69,24),(10,21,70),(11,71,22),(12,23,72),(13,41,48),(14,45,42),(15,43,46),(16,47,44),(29,64,55),(30,56,61),(31,62,53),(32,54,63),(49,59,66),(50,67,60),(51,57,68),(52,65,58)], [(1,32,24),(2,21,29),(3,30,22),(4,23,31),(5,66,44),(6,41,67),(7,68,42),(8,43,65),(9,19,54),(10,55,20),(11,17,56),(12,53,18),(13,50,25),(14,26,51),(15,52,27),(16,28,49),(33,57,45),(34,46,58),(35,59,47),(36,48,60),(37,63,69),(38,70,64),(39,61,71),(40,72,62)], [(1,41),(2,42),(3,43),(4,44),(5,31),(6,32),(7,29),(8,30),(9,60),(10,57),(11,58),(12,59),(13,37),(14,38),(15,39),(16,40),(17,46),(18,47),(19,48),(20,45),(21,68),(22,65),(23,66),(24,67),(25,63),(26,64),(27,61),(28,62),(33,55),(34,56),(35,53),(36,54),(49,72),(50,69),(51,70),(52,71)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A···4H6A6B6C6D···6I6J6K6L6M6N6O6P12A···12H
order1222222233334···46666···6666666612···12
size11119999266129···92226···61212121818181818···18

44 irreducible representations

dim111112222444666
type+++++++++++-+
imageC1C2C2C2C4S3D6D6C4×S3S32C6.D6C2×S32C32⋊D6He3⋊(C2×C4)C2×C32⋊D6
kernelC2×He3⋊(C2×C4)He3⋊(C2×C4)C2×C32⋊C12C22×He3⋊C2C2×He3⋊C2C2×C3⋊Dic3C3⋊Dic3C62C3×C6C2×C6C6C6C22C2C2
# reps142182428121242

Matrix representation of C2×He3⋊(C2×C4) in GL10(𝔽13)

1000000000
0100000000
0010000000
0001000000
00001200000
00000120000
00000012000
00000001200
00000000120
00000000012
,
12100000000
12000000000
00121000000
00120000000
0000100000
0000010000
00000001200
00000011200
0000000101
000012121201212
,
1000000000
0100000000
0010000000
0001000000
00000120000
00001120000
00000001200
00000011200
00001201201212
0000010110
,
12010000000
01201000000
12000000000
01200000000
0000001000
0000000100
00000000121
0000121212121112
0000000010
0000100010
,
0001000000
0010000000
0100000000
1000000000
00001200000
00000120000
00000000112
0000111121
00000000120
000000120120
,
0080000000
0008000000
8000000000
0800000000
000010100000
0000730000
0000333390
00001010101004
00003030103
000030010103

G:=sub<GL(10,GF(13))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12],[12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,1,0,0,0,12,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,12,12,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,12,12,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,12,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0],[12,0,12,0,0,0,0,0,0,0,0,12,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,0,0,12,11,1,1,0,0,0,0,0,0,1,12,0,0],[0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,12,12,0,0,0,0,0,0,12,1,0,0],[0,0,8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,10,7,3,10,3,3,0,0,0,0,10,3,3,10,0,0,0,0,0,0,0,0,3,10,3,0,0,0,0,0,0,0,3,10,0,10,0,0,0,0,0,0,9,0,10,10,0,0,0,0,0,0,0,4,3,3] >;

C2×He3⋊(C2×C4) in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes (C_2\times C_4)
% in TeX

G:=Group("C2xHe3:(C2xC4)");
// GroupNames label

G:=SmallGroup(432,321);
// by ID

G=gap.SmallGroup(432,321);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,64,571,4037,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^2=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=c^-1,e*d*e=f*d*f^-1=d^-1,e*f=f*e>;
// generators/relations

׿
×
𝔽