direct product, non-abelian, supersoluble, monomial
Aliases: C2×He3⋊C2, C32⋊3D6, He3⋊3C22, (C3×C6)⋊2S3, C6.5(C3⋊S3), (C2×He3)⋊2C2, C3.2(C2×C3⋊S3), SmallGroup(108,28)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — He3 — He3⋊C2 — C2×He3⋊C2 |
He3 — C2×He3⋊C2 |
Generators and relations for C2×He3⋊C2
G = < a,b,c,d,e | a2=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, cd=dc, ce=ec, ede=d-1 >
Subgroups: 167 in 55 conjugacy classes, 17 normal (7 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C32, D6, C2×C6, C3×S3, C3×C6, He3, S3×C6, He3⋊C2, C2×He3, C2×He3⋊C2
Quotients: C1, C2, C22, S3, D6, C3⋊S3, C2×C3⋊S3, He3⋊C2, C2×He3⋊C2
Character table of C2×He3⋊C2
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | |
size | 1 | 1 | 9 | 9 | 1 | 1 | 6 | 6 | 6 | 6 | 1 | 1 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | -2 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ13 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ6 | ζ65 | complex lifted from He3⋊C2 |
ρ14 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ65 | ζ6 | complex lifted from He3⋊C2 |
ρ15 | 3 | -3 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ32 | ζ3 | complex faithful |
ρ16 | 3 | -3 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ65 | ζ6 | complex faithful |
ρ17 | 3 | -3 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ6 | ζ65 | complex faithful |
ρ18 | 3 | 3 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ3 | ζ32 | complex lifted from He3⋊C2 |
ρ19 | 3 | 3 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ32 | ζ3 | complex lifted from He3⋊C2 |
ρ20 | 3 | -3 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ3 | ζ32 | complex faithful |
(1 16)(2 17)(3 18)(4 12)(5 10)(6 11)(7 15)(8 13)(9 14)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 14 10)(2 15 11)(3 13 12)(4 18 8)(5 16 9)(6 17 7)
(1 13 15)(2 10 3)(4 6 9)(5 18 17)(7 16 8)(11 14 12)
(1 16)(2 18)(3 17)(4 11)(5 10)(6 12)(7 13)(8 15)(9 14)
G:=sub<Sym(18)| (1,16)(2,17)(3,18)(4,12)(5,10)(6,11)(7,15)(8,13)(9,14), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,14,10)(2,15,11)(3,13,12)(4,18,8)(5,16,9)(6,17,7), (1,13,15)(2,10,3)(4,6,9)(5,18,17)(7,16,8)(11,14,12), (1,16)(2,18)(3,17)(4,11)(5,10)(6,12)(7,13)(8,15)(9,14)>;
G:=Group( (1,16)(2,17)(3,18)(4,12)(5,10)(6,11)(7,15)(8,13)(9,14), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,14,10)(2,15,11)(3,13,12)(4,18,8)(5,16,9)(6,17,7), (1,13,15)(2,10,3)(4,6,9)(5,18,17)(7,16,8)(11,14,12), (1,16)(2,18)(3,17)(4,11)(5,10)(6,12)(7,13)(8,15)(9,14) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,12),(5,10),(6,11),(7,15),(8,13),(9,14)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,14,10),(2,15,11),(3,13,12),(4,18,8),(5,16,9),(6,17,7)], [(1,13,15),(2,10,3),(4,6,9),(5,18,17),(7,16,8),(11,14,12)], [(1,16),(2,18),(3,17),(4,11),(5,10),(6,12),(7,13),(8,15),(9,14)]])
G:=TransitiveGroup(18,52);
C2×He3⋊C2 is a maximal subgroup of
He3⋊(C2×C4) He3⋊3D4 He3⋊5D4 He3⋊7D4 C32⋊3GL2(𝔽3)
C2×He3⋊C2 is a maximal quotient of He3⋊4Q8 He3⋊5D4 He3⋊7D4
Matrix representation of C2×He3⋊C2 ►in GL3(𝔽7) generated by
6 | 0 | 0 |
0 | 6 | 0 |
0 | 0 | 6 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
2 | 0 | 0 |
0 | 2 | 0 |
0 | 0 | 2 |
1 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 2 |
6 | 0 | 0 |
0 | 0 | 6 |
0 | 6 | 0 |
G:=sub<GL(3,GF(7))| [6,0,0,0,6,0,0,0,6],[0,0,1,1,0,0,0,1,0],[2,0,0,0,2,0,0,0,2],[1,0,0,0,4,0,0,0,2],[6,0,0,0,0,6,0,6,0] >;
C2×He3⋊C2 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3\rtimes C_2
% in TeX
G:=Group("C2xHe3:C2");
// GroupNames label
G:=SmallGroup(108,28);
// by ID
G=gap.SmallGroup(108,28);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,122,483,253]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export