Extensions 1→N→G→Q→1 with N=C3⋊D36 and Q=C2

Direct product G=N×Q with N=C3⋊D36 and Q=C2
dρLabelID
C2×C3⋊D3672C2xC3:D36432,307

Semidirect products G=N:Q with N=C3⋊D36 and Q=C2
extensionφ:Q→Out NdρLabelID
C3⋊D361C2 = S3×D36φ: C2/C1C2 ⊆ Out C3⋊D36724+C3:D36:1C2432,291
C3⋊D362C2 = D18.3D6φ: C2/C1C2 ⊆ Out C3⋊D36724C3:D36:2C2432,305
C3⋊D363C2 = D18.D6φ: C2/C1C2 ⊆ Out C3⋊D36724C3:D36:3C2432,281
C3⋊D364C2 = Dic65D9φ: C2/C1C2 ⊆ Out C3⋊D36724+C3:D36:4C2432,282
C3⋊D365C2 = D9×C3⋊D4φ: C2/C1C2 ⊆ Out C3⋊D36724C3:D36:5C2432,314
C3⋊D366C2 = D18⋊D6φ: C2/C1C2 ⊆ Out C3⋊D36364+C3:D36:6C2432,315
C3⋊D367C2 = D6.D18φ: trivial image724C3:D36:7C2432,287


׿
×
𝔽