Copied to
clipboard

G = C2×C3⋊D36order 432 = 24·33

Direct product of C2 and C3⋊D36

direct product, metabelian, supersoluble, monomial

Aliases: C2×C3⋊D36, C62D36, D185D6, Dic34D18, C62.64D6, (C3×C18)⋊1D4, C33(C2×D36), C181(C3⋊D4), (C2×Dic3)⋊4D9, (C2×C6).18D18, (C3×C6).36D12, (C2×C18).19D6, (C22×D9)⋊2S3, (C6×D9)⋊5C22, (Dic3×C18)⋊5C2, C22.14(S3×D9), C6.19(C22×D9), C32.3(C2×D12), C6.7(C3⋊D12), (C3×C18).19C23, (C6×C18).13C22, C18.19(C22×S3), (C6×Dic3).10S3, (C3×Dic3).33D6, (C9×Dic3)⋊4C22, (C2×C6×D9)⋊1C2, (C3×C9)⋊4(C2×D4), C6.38(C2×S32), (C2×C6).25S32, C91(C2×C3⋊D4), C2.20(C2×S3×D9), (C22×C9⋊S3)⋊1C2, (C2×C9⋊S3)⋊5C22, C3.1(C2×C3⋊D12), (C3×C6).87(C22×S3), SmallGroup(432,307)

Series: Derived Chief Lower central Upper central

C1C3×C18 — C2×C3⋊D36
C1C3C32C3×C9C3×C18C9×Dic3C3⋊D36 — C2×C3⋊D36
C3×C9C3×C18 — C2×C3⋊D36
C1C22

Generators and relations for C2×C3⋊D36
 G = < a,b,c,d | a2=b3=c36=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 1468 in 194 conjugacy classes, 53 normal (25 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C9, C9, C32, Dic3, C12, D6, C2×C6, C2×C6, C2×D4, D9, C18, C18, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C3×C9, C36, D18, D18, C2×C18, C2×C18, C3×Dic3, S3×C6, C2×C3⋊S3, C62, C2×D12, C2×C3⋊D4, C3×D9, C9⋊S3, C3×C18, C3×C18, D36, C2×C36, C22×D9, C22×D9, C3⋊D12, C6×Dic3, S3×C2×C6, C22×C3⋊S3, C9×Dic3, C6×D9, C6×D9, C2×C9⋊S3, C2×C9⋊S3, C6×C18, C2×D36, C2×C3⋊D12, C3⋊D36, Dic3×C18, C2×C6×D9, C22×C9⋊S3, C2×C3⋊D36
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, D12, C3⋊D4, C22×S3, D18, S32, C2×D12, C2×C3⋊D4, D36, C22×D9, C3⋊D12, C2×S32, S3×D9, C2×D36, C2×C3⋊D12, C3⋊D36, C2×S3×D9, C2×C3⋊D36

Smallest permutation representation of C2×C3⋊D36
On 72 points
Generators in S72
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 71)(9 72)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)
(1 25 13)(2 14 26)(3 27 15)(4 16 28)(5 29 17)(6 18 30)(7 31 19)(8 20 32)(9 33 21)(10 22 34)(11 35 23)(12 24 36)(37 49 61)(38 62 50)(39 51 63)(40 64 52)(41 53 65)(42 66 54)(43 55 67)(44 68 56)(45 57 69)(46 70 58)(47 59 71)(48 72 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 36)(11 35)(12 34)(13 33)(14 32)(15 31)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)(37 63)(38 62)(39 61)(40 60)(41 59)(42 58)(43 57)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(64 72)(65 71)(66 70)(67 69)

G:=sub<Sym(72)| (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63), (1,25,13)(2,14,26)(3,27,15)(4,16,28)(5,29,17)(6,18,30)(7,31,19)(8,20,32)(9,33,21)(10,22,34)(11,35,23)(12,24,36)(37,49,61)(38,62,50)(39,51,63)(40,64,52)(41,53,65)(42,66,54)(43,55,67)(44,68,56)(45,57,69)(46,70,58)(47,59,71)(48,72,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(37,63)(38,62)(39,61)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(64,72)(65,71)(66,70)(67,69)>;

G:=Group( (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63), (1,25,13)(2,14,26)(3,27,15)(4,16,28)(5,29,17)(6,18,30)(7,31,19)(8,20,32)(9,33,21)(10,22,34)(11,35,23)(12,24,36)(37,49,61)(38,62,50)(39,51,63)(40,64,52)(41,53,65)(42,66,54)(43,55,67)(44,68,56)(45,57,69)(46,70,58)(47,59,71)(48,72,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(37,63)(38,62)(39,61)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(64,72)(65,71)(66,70)(67,69) );

G=PermutationGroup([[(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,71),(9,72),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63)], [(1,25,13),(2,14,26),(3,27,15),(4,16,28),(5,29,17),(6,18,30),(7,31,19),(8,20,32),(9,33,21),(10,22,34),(11,35,23),(12,24,36),(37,49,61),(38,62,50),(39,51,63),(40,64,52),(41,53,65),(42,66,54),(43,55,67),(44,68,56),(45,57,69),(46,70,58),(47,59,71),(48,72,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,36),(11,35),(12,34),(13,33),(14,32),(15,31),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24),(37,63),(38,62),(39,61),(40,60),(41,59),(42,58),(43,57),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(64,72),(65,71),(66,70),(67,69)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B6A···6F6G6H6I6J6K6L6M9A9B9C9D9E9F12A12B12C12D18A···18I18J···18R36A···36L
order12222222333446···666666669999991212121218···1818···1836···36
size111118185454224662···24441818181822244466662···24···46···6

66 irreducible representations

dim111112222222222222444444
type+++++++++++++++++++++++
imageC1C2C2C2C2S3S3D4D6D6D6D6D9C3⋊D4D12D18D18D36S32C3⋊D12C2×S32S3×D9C3⋊D36C2×S3×D9
kernelC2×C3⋊D36C3⋊D36Dic3×C18C2×C6×D9C22×C9⋊S3C22×D9C6×Dic3C3×C18D18C2×C18C3×Dic3C62C2×Dic3C18C3×C6Dic3C2×C6C6C2×C6C6C6C22C2C2
# reps1411111221213446312121363

Matrix representation of C2×C3⋊D36 in GL6(𝔽37)

3600000
0360000
0036000
0003600
0000360
0000036
,
100000
010000
00363600
001000
000010
000001
,
22340000
26150000
0036000
001100
0000626
00001117
,
100000
27360000
001000
00363600
00003111
0000176

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,1,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,26,0,0,0,0,34,15,0,0,0,0,0,0,36,1,0,0,0,0,0,1,0,0,0,0,0,0,6,11,0,0,0,0,26,17],[1,27,0,0,0,0,0,36,0,0,0,0,0,0,1,36,0,0,0,0,0,36,0,0,0,0,0,0,31,17,0,0,0,0,11,6] >;

C2×C3⋊D36 in GAP, Magma, Sage, TeX

C_2\times C_3\rtimes D_{36}
% in TeX

G:=Group("C2xC3:D36");
// GroupNames label

G:=SmallGroup(432,307);
// by ID

G=gap.SmallGroup(432,307);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^36=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽