Copied to
clipboard

G = D18.3D6order 432 = 24·33

3rd non-split extension by D18 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: D18.3D6, Dic9.5D6, C62.62D6, Dic3.12D18, C9⋊D43S3, (C2×C6).4D18, C3⋊D362C2, (Dic3×D9)⋊5C2, (C2×Dic3)⋊3D9, (C2×C18).17D6, C93(D42S3), C22.2(S3×D9), (Dic3×C18)⋊6C2, C9⋊Dic62C2, C18.D65C2, C34(D365C2), (C6×D9).3C22, C6.17(C22×D9), C6.D181C2, (C6×C18).11C22, (C3×C18).17C23, C18.17(C22×S3), (C3×Dic3).32D6, (C6×Dic3).13S3, C9⋊Dic3.5C22, C3.1(D6.3D6), C32.5(C4○D12), (C3×Dic9).5C22, (C9×Dic3).10C22, C6.36(C2×S32), (C2×C6).23S32, C2.19(C2×S3×D9), (C3×C9)⋊8(C4○D4), (C3×C9⋊D4)⋊1C2, (C2×C9⋊S3).3C22, (C3×C6).85(C22×S3), SmallGroup(432,305)

Series: Derived Chief Lower central Upper central

C1C3×C18 — D18.3D6
C1C3C32C3×C9C3×C18C9×Dic3Dic3×D9 — D18.3D6
C3×C9C3×C18 — D18.3D6
C1C2C22

Generators and relations for D18.3D6
 G = < a,b,c,d | a18=b2=c6=1, d2=a9, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a9b, dcd-1=c-1 >

Subgroups: 856 in 136 conjugacy classes, 41 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, Q8, C9, C9, C32, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C4○D4, D9, C18, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×C9, Dic9, Dic9, C36, D18, D18, C2×C18, C2×C18, C3×Dic3, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C62, C4○D12, D42S3, C3×D9, C9⋊S3, C3×C18, C3×C18, Dic18, C4×D9, D36, C9⋊D4, C9⋊D4, C2×C36, S3×Dic3, C6.D6, C3⋊D12, C322Q8, C6×Dic3, C3×C3⋊D4, C327D4, C3×Dic9, C9×Dic3, C9⋊Dic3, C6×D9, C2×C9⋊S3, C6×C18, D365C2, D6.3D6, C9⋊Dic6, Dic3×D9, C18.D6, C3⋊D36, Dic3×C18, C3×C9⋊D4, C6.D18, D18.3D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, D18, S32, C4○D12, D42S3, C22×D9, C2×S32, S3×D9, D365C2, D6.3D6, C2×S3×D9, D18.3D6

Smallest permutation representation of D18.3D6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(37 68)(38 67)(39 66)(40 65)(41 64)(42 63)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 56)(50 55)(51 72)(52 71)(53 70)(54 69)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 22 25 28 31 34)(20 23 26 29 32 35)(21 24 27 30 33 36)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)(55 70 67 64 61 58)(56 71 68 65 62 59)(57 72 69 66 63 60)
(1 48 10 39)(2 49 11 40)(3 50 12 41)(4 51 13 42)(5 52 14 43)(6 53 15 44)(7 54 16 45)(8 37 17 46)(9 38 18 47)(19 55 28 64)(20 56 29 65)(21 57 30 66)(22 58 31 67)(23 59 32 68)(24 60 33 69)(25 61 34 70)(26 62 35 71)(27 63 36 72)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,72)(52,71)(53,70)(54,69), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,22,25,28,31,34)(20,23,26,29,32,35)(21,24,27,30,33,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,70,67,64,61,58)(56,71,68,65,62,59)(57,72,69,66,63,60), (1,48,10,39)(2,49,11,40)(3,50,12,41)(4,51,13,42)(5,52,14,43)(6,53,15,44)(7,54,16,45)(8,37,17,46)(9,38,18,47)(19,55,28,64)(20,56,29,65)(21,57,30,66)(22,58,31,67)(23,59,32,68)(24,60,33,69)(25,61,34,70)(26,62,35,71)(27,63,36,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,72)(52,71)(53,70)(54,69), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,22,25,28,31,34)(20,23,26,29,32,35)(21,24,27,30,33,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,70,67,64,61,58)(56,71,68,65,62,59)(57,72,69,66,63,60), (1,48,10,39)(2,49,11,40)(3,50,12,41)(4,51,13,42)(5,52,14,43)(6,53,15,44)(7,54,16,45)(8,37,17,46)(9,38,18,47)(19,55,28,64)(20,56,29,65)(21,57,30,66)(22,58,31,67)(23,59,32,68)(24,60,33,69)(25,61,34,70)(26,62,35,71)(27,63,36,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(37,68),(38,67),(39,66),(40,65),(41,64),(42,63),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,56),(50,55),(51,72),(52,71),(53,70),(54,69)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,22,25,28,31,34),(20,23,26,29,32,35),(21,24,27,30,33,36),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48),(55,70,67,64,61,58),(56,71,68,65,62,59),(57,72,69,66,63,60)], [(1,48,10,39),(2,49,11,40),(3,50,12,41),(4,51,13,42),(5,52,14,43),(6,53,15,44),(7,54,16,45),(8,37,17,46),(9,38,18,47),(19,55,28,64),(20,56,29,65),(21,57,30,66),(22,58,31,67),(23,59,32,68),(24,60,33,69),(25,61,34,70),(26,62,35,71),(27,63,36,72)]])

63 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H6I9A9B9C9D9E9F12A12B12C12D12E18A···18I18J···18R36A···36L
order1222233344444666666666999999121212121218···1818···1836···36
size1121854224336185422224444362224446666362···24···46···6

63 irreducible representations

dim1111111122222222222224444444
type+++++++++++++++++++-+++
imageC1C2C2C2C2C2C2C2S3S3D6D6D6D6D6C4○D4D9D18D18C4○D12D365C2S32D42S3C2×S32S3×D9D6.3D6C2×S3×D9D18.3D6
kernelD18.3D6C9⋊Dic6Dic3×D9C18.D6C3⋊D36Dic3×C18C3×C9⋊D4C6.D18C9⋊D4C6×Dic3Dic9D18C2×C18C3×Dic3C62C3×C9C2×Dic3Dic3C2×C6C32C3C2×C6C9C6C22C3C2C1
# reps11111111111112123634121113236

Matrix representation of D18.3D6 in GL6(𝔽37)

1100000
0270000
001000
000100
0000160
000007
,
0270000
1100000
001000
000100
0000030
0000210
,
100000
0360000
0003600
001100
000010
000001
,
3100000
060000
0003600
0036000
0000360
0000036

G:=sub<GL(6,GF(37))| [11,0,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,7],[0,11,0,0,0,0,27,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,21,0,0,0,0,30,0],[1,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,36,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[31,0,0,0,0,0,0,6,0,0,0,0,0,0,0,36,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,36] >;

D18.3D6 in GAP, Magma, Sage, TeX

D_{18}._3D_6
% in TeX

G:=Group("D18.3D6");
// GroupNames label

G:=SmallGroup(432,305);
// by ID

G=gap.SmallGroup(432,305);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,135,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^18=b^2=c^6=1,d^2=a^9,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^9*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽