Copied to
clipboard

G = S3×D36order 432 = 24·33

Direct product of S3 and D36

direct product, metabelian, supersoluble, monomial

Aliases: S3×D36, C364D6, D181D6, C121D18, Dic33D18, D6.10D18, C91(S3×D4), C42(S3×D9), C12.51S32, (S3×C9)⋊1D4, (C4×S3)⋊3D9, C31(C2×D36), (C3×S3).D12, (S3×C36)⋊1C2, (C3×D36)⋊4C2, C3.1(S3×D12), C36⋊S34C2, C3⋊D361C2, (S3×C12).7S3, (C3×C36)⋊1C22, (S3×C6).30D6, (C3×C12).98D6, (C6×D9)⋊1C22, C32.2(C2×D12), C6.12(C22×D9), C18.12(C22×S3), (C3×C18).12C23, (C3×Dic3).30D6, (C9×Dic3)⋊3C22, (S3×C18).13C22, (C2×S3×D9)⋊1C2, (C3×C9)⋊1(C2×D4), C6.31(C2×S32), C2.15(C2×S3×D9), (C2×C9⋊S3)⋊1C22, (C3×C6).80(C22×S3), SmallGroup(432,291)

Series: Derived Chief Lower central Upper central

C1C3×C18 — S3×D36
C1C3C32C3×C9C3×C18S3×C18C2×S3×D9 — S3×D36
C3×C9C3×C18 — S3×D36
C1C2C4

Generators and relations for S3×D36
 G = < a,b,c,d | a3=b2=c36=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1480 in 178 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, S3, C6, C6, C2×C4, D4, C23, C9, C9, C32, Dic3, C12, C12, D6, D6, C2×C6, C2×D4, D9, C18, C18, C3×S3, C3×S3, C3⋊S3, C3×C6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C22×S3, C3×C9, C36, C36, D18, D18, C2×C18, C3×Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C2×D12, S3×D4, C3×D9, S3×C9, C9⋊S3, C3×C18, D36, D36, C2×C36, C22×D9, C3⋊D12, S3×C12, C3×D12, C12⋊S3, C2×S32, C9×Dic3, C3×C36, S3×D9, C6×D9, S3×C18, C2×C9⋊S3, C2×D36, S3×D12, C3⋊D36, C3×D36, S3×C36, C36⋊S3, C2×S3×D9, S3×D36
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, D12, C22×S3, D18, S32, C2×D12, S3×D4, D36, C22×D9, C2×S32, S3×D9, C2×D36, S3×D12, C2×S3×D9, S3×D36

Smallest permutation representation of S3×D36
On 72 points
Generators in S72
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 17 29)(6 18 30)(7 19 31)(8 20 32)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(37 61 49)(38 62 50)(39 63 51)(40 64 52)(41 65 53)(42 66 54)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 57)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 37)(33 38)(34 39)(35 40)(36 41)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 72)(7 71)(8 70)(9 69)(10 68)(11 67)(12 66)(13 65)(14 64)(15 63)(16 62)(17 61)(18 60)(19 59)(20 58)(21 57)(22 56)(23 55)(24 54)(25 53)(26 52)(27 51)(28 50)(29 49)(30 48)(31 47)(32 46)(33 45)(34 44)(35 43)(36 42)

G:=sub<Sym(72)| (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,37)(33,38)(34,39)(35,40)(36,41), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,41)(2,40)(3,39)(4,38)(5,37)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)>;

G:=Group( (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,37)(33,38)(34,39)(35,40)(36,41), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,41)(2,40)(3,39)(4,38)(5,37)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42) );

G=PermutationGroup([[(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,17,29),(6,18,30),(7,19,31),(8,20,32),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(37,61,49),(38,62,50),(39,63,51),(40,64,52),(41,65,53),(42,66,54),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,57),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,37),(33,38),(34,39),(35,40),(36,41)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,72),(7,71),(8,70),(9,69),(10,68),(11,67),(12,66),(13,65),(14,64),(15,63),(16,62),(17,61),(18,60),(19,59),(20,58),(21,57),(22,56),(23,55),(24,54),(25,53),(26,52),(27,51),(28,50),(29,49),(30,48),(31,47),(32,46),(33,45),(34,44),(35,43),(36,42)]])

63 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B6A6B6C6D6E6F6G9A9B9C9D9E9F12A12B12C12D12E12F12G18A18B18C18D18E18F18G···18L36A···36F36G···36L36M···36R
order122222223334466666669999991212121212121218181818181818···1836···3636···3636···36
size1133181854542242622466363622244422444662224446···62···24···46···6

63 irreducible representations

dim111111222222222222224444444
type+++++++++++++++++++++++++++
imageC1C2C2C2C2C2S3S3D4D6D6D6D6D6D9D12D18D18D18D36S32S3×D4C2×S32S3×D9S3×D12C2×S3×D9S3×D36
kernelS3×D36C3⋊D36C3×D36S3×C36C36⋊S3C2×S3×D9D36S3×C12S3×C9C36D18C3×Dic3C3×C12S3×C6C4×S3C3×S3Dic3C12D6S3C12C9C6C4C3C2C1
# reps1211121121211134333121113236

Matrix representation of S3×D36 in GL6(𝔽37)

100000
010000
0036100
0036000
000010
000001
,
3600000
0360000
000100
001000
000010
000001
,
15340000
26220000
0036000
0003600
00001110
00003431
,
2230000
24150000
0036000
0003600
00001734
00002220

G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,36,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,26,0,0,0,0,34,22,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,11,34,0,0,0,0,10,31],[22,24,0,0,0,0,3,15,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,17,22,0,0,0,0,34,20] >;

S3×D36 in GAP, Magma, Sage, TeX

S_3\times D_{36}
% in TeX

G:=Group("S3xD36");
// GroupNames label

G:=SmallGroup(432,291);
// by ID

G=gap.SmallGroup(432,291);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,135,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^36=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽