# Extensions 1→N→G→Q→1 with N=C22×He3 and Q=C4

Direct product G=N×Q with N=C22×He3 and Q=C4
dρLabelID
C22×C4×He3144C2^2xC4xHe3432,401

Semidirect products G=N:Q with N=C22×He3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×He3)⋊1C4 = C22⋊(He3⋊C4)φ: C4/C1C4 ⊆ Out C22×He3366(C2^2xHe3):1C4432,279
(C22×He3)⋊2C4 = C22×He3⋊C4φ: C4/C1C4 ⊆ Out C22×He372(C2^2xHe3):2C4432,543
(C22×He3)⋊3C4 = C22⋊C4×He3φ: C4/C2C2 ⊆ Out C22×He372(C2^2xHe3):3C4432,204
(C22×He3)⋊4C4 = C623C12φ: C4/C2C2 ⊆ Out C22×He372(C2^2xHe3):4C4432,166
(C22×He3)⋊5C4 = C624Dic3φ: C4/C2C2 ⊆ Out C22×He372(C2^2xHe3):5C4432,199
(C22×He3)⋊6C4 = C22×C32⋊C12φ: C4/C2C2 ⊆ Out C22×He3144(C2^2xHe3):6C4432,376
(C22×He3)⋊7C4 = C22×He33C4φ: C4/C2C2 ⊆ Out C22×He3144(C2^2xHe3):7C4432,398

Non-split extensions G=N.Q with N=C22×He3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×He3).1C4 = C2×He32C8φ: C4/C1C4 ⊆ Out C22×He3144(C2^2xHe3).1C4432,277
(C22×He3).2C4 = He34M4(2)φ: C4/C1C4 ⊆ Out C22×He3726(C2^2xHe3).2C4432,278
(C22×He3).3C4 = M4(2)×He3φ: C4/C2C2 ⊆ Out C22×He3726(C2^2xHe3).3C4432,213
(C22×He3).4C4 = C2×He33C8φ: C4/C2C2 ⊆ Out C22×He3144(C2^2xHe3).4C4432,136
(C22×He3).5C4 = He37M4(2)φ: C4/C2C2 ⊆ Out C22×He3726(C2^2xHe3).5C4432,137
(C22×He3).6C4 = C2×He34C8φ: C4/C2C2 ⊆ Out C22×He3144(C2^2xHe3).6C4432,184
(C22×He3).7C4 = He38M4(2)φ: C4/C2C2 ⊆ Out C22×He3726(C2^2xHe3).7C4432,185
(C22×He3).8C4 = C2×C8×He3φ: trivial image144(C2^2xHe3).8C4432,210

׿
×
𝔽