direct product, metabelian, supersoluble, monomial
Aliases: C2×He3⋊3C8, C62.4C12, C62.1Dic3, (C3×C6)⋊2C24, He3⋊8(C2×C8), (C6×C12).8C6, (C2×He3)⋊3C8, C12.92(S3×C6), (C6×C12).16S3, (C3×C12).3C12, C32⋊3(C2×C24), C32⋊4C8⋊7C6, (C3×C12).60D6, (C4×He3).8C4, (C3×C12).8Dic3, C6.10(C6×Dic3), C4.3(C32⋊C12), C12.13(C3×Dic3), (C22×He3).4C4, (C4×He3).43C22, C22.2(C32⋊C12), C6.5(C3×C3⋊C8), C3.2(C6×C3⋊C8), (C3×C6)⋊2(C3⋊C8), C32⋊3(C2×C3⋊C8), (C2×C32⋊4C8)⋊C3, (C3×C6).5(C2×C12), (C2×C4×He3).10C2, (C3×C12).15(C2×C6), (C2×C12).31(C3×S3), C2.1(C2×C32⋊C12), C4.14(C2×C32⋊C6), (C3×C6).6(C2×Dic3), (C2×C4).5(C32⋊C6), (C2×He3).26(C2×C4), (C2×C6).14(C3×Dic3), SmallGroup(432,136)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C2×He3⋊3C8 |
Generators and relations for C2×He3⋊3C8
G = < a,b,c,d,e | a2=b3=c3=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1, cd=dc, ece-1=c-1, de=ed >
Subgroups: 257 in 93 conjugacy classes, 46 normal (32 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C8, C2×C4, C32, C32, C12, C12, C2×C6, C2×C6, C2×C8, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C2×C12, C2×C12, He3, C3×C12, C3×C12, C62, C62, C2×C3⋊C8, C2×C24, C2×He3, C2×He3, C3×C3⋊C8, C32⋊4C8, C6×C12, C6×C12, C4×He3, C22×He3, C6×C3⋊C8, C2×C32⋊4C8, He3⋊3C8, C2×C4×He3, C2×He3⋊3C8
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, Dic3, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊C8, C24, C2×Dic3, C2×C12, C3×Dic3, S3×C6, C2×C3⋊C8, C2×C24, C32⋊C6, C3×C3⋊C8, C6×Dic3, C32⋊C12, C2×C32⋊C6, C6×C3⋊C8, He3⋊3C8, C2×C32⋊C12, C2×He3⋊3C8
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 60)(10 61)(11 62)(12 63)(13 64)(14 57)(15 58)(16 59)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 84)(26 85)(27 86)(28 87)(29 88)(30 81)(31 82)(32 83)(41 126)(42 127)(43 128)(44 121)(45 122)(46 123)(47 124)(48 125)(65 107)(66 108)(67 109)(68 110)(69 111)(70 112)(71 105)(72 106)(73 129)(74 130)(75 131)(76 132)(77 133)(78 134)(79 135)(80 136)(89 138)(90 139)(91 140)(92 141)(93 142)(94 143)(95 144)(96 137)(97 120)(98 113)(99 114)(100 115)(101 116)(102 117)(103 118)(104 119)
(1 39 143)(2 144 40)(3 33 137)(4 138 34)(5 35 139)(6 140 36)(7 37 141)(8 142 38)(17 96 49)(18 50 89)(19 90 51)(20 52 91)(21 92 53)(22 54 93)(23 94 55)(24 56 95)(25 97 67)(26 68 98)(27 99 69)(28 70 100)(29 101 71)(30 72 102)(31 103 65)(32 66 104)(81 106 117)(82 118 107)(83 108 119)(84 120 109)(85 110 113)(86 114 111)(87 112 115)(88 116 105)
(1 39 143)(2 144 40)(3 33 137)(4 138 34)(5 35 139)(6 140 36)(7 37 141)(8 142 38)(9 74 44)(10 45 75)(11 76 46)(12 47 77)(13 78 48)(14 41 79)(15 80 42)(16 43 73)(17 96 49)(18 50 89)(19 90 51)(20 52 91)(21 92 53)(22 54 93)(23 94 55)(24 56 95)(25 67 97)(26 98 68)(27 69 99)(28 100 70)(29 71 101)(30 102 72)(31 65 103)(32 104 66)(57 126 135)(58 136 127)(59 128 129)(60 130 121)(61 122 131)(62 132 123)(63 124 133)(64 134 125)(81 117 106)(82 107 118)(83 119 108)(84 109 120)(85 113 110)(86 111 114)(87 115 112)(88 105 116)
(1 48 106)(2 41 107)(3 42 108)(4 43 109)(5 44 110)(6 45 111)(7 46 112)(8 47 105)(9 85 35)(10 86 36)(11 87 37)(12 88 38)(13 81 39)(14 82 40)(15 83 33)(16 84 34)(17 58 32)(18 59 25)(19 60 26)(20 61 27)(21 62 28)(22 63 29)(23 64 30)(24 57 31)(49 127 66)(50 128 67)(51 121 68)(52 122 69)(53 123 70)(54 124 71)(55 125 72)(56 126 65)(73 120 138)(74 113 139)(75 114 140)(76 115 141)(77 116 142)(78 117 143)(79 118 144)(80 119 137)(89 129 97)(90 130 98)(91 131 99)(92 132 100)(93 133 101)(94 134 102)(95 135 103)(96 136 104)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
G:=sub<Sym(144)| (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,84)(26,85)(27,86)(28,87)(29,88)(30,81)(31,82)(32,83)(41,126)(42,127)(43,128)(44,121)(45,122)(46,123)(47,124)(48,125)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,105)(72,106)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(89,138)(90,139)(91,140)(92,141)(93,142)(94,143)(95,144)(96,137)(97,120)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119), (1,39,143)(2,144,40)(3,33,137)(4,138,34)(5,35,139)(6,140,36)(7,37,141)(8,142,38)(17,96,49)(18,50,89)(19,90,51)(20,52,91)(21,92,53)(22,54,93)(23,94,55)(24,56,95)(25,97,67)(26,68,98)(27,99,69)(28,70,100)(29,101,71)(30,72,102)(31,103,65)(32,66,104)(81,106,117)(82,118,107)(83,108,119)(84,120,109)(85,110,113)(86,114,111)(87,112,115)(88,116,105), (1,39,143)(2,144,40)(3,33,137)(4,138,34)(5,35,139)(6,140,36)(7,37,141)(8,142,38)(9,74,44)(10,45,75)(11,76,46)(12,47,77)(13,78,48)(14,41,79)(15,80,42)(16,43,73)(17,96,49)(18,50,89)(19,90,51)(20,52,91)(21,92,53)(22,54,93)(23,94,55)(24,56,95)(25,67,97)(26,98,68)(27,69,99)(28,100,70)(29,71,101)(30,102,72)(31,65,103)(32,104,66)(57,126,135)(58,136,127)(59,128,129)(60,130,121)(61,122,131)(62,132,123)(63,124,133)(64,134,125)(81,117,106)(82,107,118)(83,119,108)(84,109,120)(85,113,110)(86,111,114)(87,115,112)(88,105,116), (1,48,106)(2,41,107)(3,42,108)(4,43,109)(5,44,110)(6,45,111)(7,46,112)(8,47,105)(9,85,35)(10,86,36)(11,87,37)(12,88,38)(13,81,39)(14,82,40)(15,83,33)(16,84,34)(17,58,32)(18,59,25)(19,60,26)(20,61,27)(21,62,28)(22,63,29)(23,64,30)(24,57,31)(49,127,66)(50,128,67)(51,121,68)(52,122,69)(53,123,70)(54,124,71)(55,125,72)(56,126,65)(73,120,138)(74,113,139)(75,114,140)(76,115,141)(77,116,142)(78,117,143)(79,118,144)(80,119,137)(89,129,97)(90,130,98)(91,131,99)(92,132,100)(93,133,101)(94,134,102)(95,135,103)(96,136,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)>;
G:=Group( (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,84)(26,85)(27,86)(28,87)(29,88)(30,81)(31,82)(32,83)(41,126)(42,127)(43,128)(44,121)(45,122)(46,123)(47,124)(48,125)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,105)(72,106)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(89,138)(90,139)(91,140)(92,141)(93,142)(94,143)(95,144)(96,137)(97,120)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119), (1,39,143)(2,144,40)(3,33,137)(4,138,34)(5,35,139)(6,140,36)(7,37,141)(8,142,38)(17,96,49)(18,50,89)(19,90,51)(20,52,91)(21,92,53)(22,54,93)(23,94,55)(24,56,95)(25,97,67)(26,68,98)(27,99,69)(28,70,100)(29,101,71)(30,72,102)(31,103,65)(32,66,104)(81,106,117)(82,118,107)(83,108,119)(84,120,109)(85,110,113)(86,114,111)(87,112,115)(88,116,105), (1,39,143)(2,144,40)(3,33,137)(4,138,34)(5,35,139)(6,140,36)(7,37,141)(8,142,38)(9,74,44)(10,45,75)(11,76,46)(12,47,77)(13,78,48)(14,41,79)(15,80,42)(16,43,73)(17,96,49)(18,50,89)(19,90,51)(20,52,91)(21,92,53)(22,54,93)(23,94,55)(24,56,95)(25,67,97)(26,98,68)(27,69,99)(28,100,70)(29,71,101)(30,102,72)(31,65,103)(32,104,66)(57,126,135)(58,136,127)(59,128,129)(60,130,121)(61,122,131)(62,132,123)(63,124,133)(64,134,125)(81,117,106)(82,107,118)(83,119,108)(84,109,120)(85,113,110)(86,111,114)(87,115,112)(88,105,116), (1,48,106)(2,41,107)(3,42,108)(4,43,109)(5,44,110)(6,45,111)(7,46,112)(8,47,105)(9,85,35)(10,86,36)(11,87,37)(12,88,38)(13,81,39)(14,82,40)(15,83,33)(16,84,34)(17,58,32)(18,59,25)(19,60,26)(20,61,27)(21,62,28)(22,63,29)(23,64,30)(24,57,31)(49,127,66)(50,128,67)(51,121,68)(52,122,69)(53,123,70)(54,124,71)(55,125,72)(56,126,65)(73,120,138)(74,113,139)(75,114,140)(76,115,141)(77,116,142)(78,117,143)(79,118,144)(80,119,137)(89,129,97)(90,130,98)(91,131,99)(92,132,100)(93,133,101)(94,134,102)(95,135,103)(96,136,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144) );
G=PermutationGroup([[(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,60),(10,61),(11,62),(12,63),(13,64),(14,57),(15,58),(16,59),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,84),(26,85),(27,86),(28,87),(29,88),(30,81),(31,82),(32,83),(41,126),(42,127),(43,128),(44,121),(45,122),(46,123),(47,124),(48,125),(65,107),(66,108),(67,109),(68,110),(69,111),(70,112),(71,105),(72,106),(73,129),(74,130),(75,131),(76,132),(77,133),(78,134),(79,135),(80,136),(89,138),(90,139),(91,140),(92,141),(93,142),(94,143),(95,144),(96,137),(97,120),(98,113),(99,114),(100,115),(101,116),(102,117),(103,118),(104,119)], [(1,39,143),(2,144,40),(3,33,137),(4,138,34),(5,35,139),(6,140,36),(7,37,141),(8,142,38),(17,96,49),(18,50,89),(19,90,51),(20,52,91),(21,92,53),(22,54,93),(23,94,55),(24,56,95),(25,97,67),(26,68,98),(27,99,69),(28,70,100),(29,101,71),(30,72,102),(31,103,65),(32,66,104),(81,106,117),(82,118,107),(83,108,119),(84,120,109),(85,110,113),(86,114,111),(87,112,115),(88,116,105)], [(1,39,143),(2,144,40),(3,33,137),(4,138,34),(5,35,139),(6,140,36),(7,37,141),(8,142,38),(9,74,44),(10,45,75),(11,76,46),(12,47,77),(13,78,48),(14,41,79),(15,80,42),(16,43,73),(17,96,49),(18,50,89),(19,90,51),(20,52,91),(21,92,53),(22,54,93),(23,94,55),(24,56,95),(25,67,97),(26,98,68),(27,69,99),(28,100,70),(29,71,101),(30,102,72),(31,65,103),(32,104,66),(57,126,135),(58,136,127),(59,128,129),(60,130,121),(61,122,131),(62,132,123),(63,124,133),(64,134,125),(81,117,106),(82,107,118),(83,119,108),(84,109,120),(85,113,110),(86,111,114),(87,115,112),(88,105,116)], [(1,48,106),(2,41,107),(3,42,108),(4,43,109),(5,44,110),(6,45,111),(7,46,112),(8,47,105),(9,85,35),(10,86,36),(11,87,37),(12,88,38),(13,81,39),(14,82,40),(15,83,33),(16,84,34),(17,58,32),(18,59,25),(19,60,26),(20,61,27),(21,62,28),(22,63,29),(23,64,30),(24,57,31),(49,127,66),(50,128,67),(51,121,68),(52,122,69),(53,123,70),(54,124,71),(55,125,72),(56,126,65),(73,120,138),(74,113,139),(75,114,140),(76,115,141),(77,116,142),(78,117,143),(79,118,144),(80,119,137),(89,129,97),(90,130,98),(91,131,99),(92,132,100),(93,133,101),(94,134,102),(95,135,103),(96,136,104)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | ··· | 6I | 6J | ··· | 6R | 8A | ··· | 8H | 12A | 12B | 12C | 12D | 12E | ··· | 12L | 12M | ··· | 12X | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 | 6 | 6 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 |
type | + | + | + | + | - | + | - | + | - | + | - | ||||||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C12 | C12 | C24 | S3 | Dic3 | D6 | Dic3 | C3×S3 | C3⋊C8 | C3×Dic3 | S3×C6 | C3×Dic3 | C3×C3⋊C8 | C32⋊C6 | C32⋊C12 | C2×C32⋊C6 | C32⋊C12 | He3⋊3C8 |
kernel | C2×He3⋊3C8 | He3⋊3C8 | C2×C4×He3 | C2×C32⋊4C8 | C4×He3 | C22×He3 | C32⋊4C8 | C6×C12 | C2×He3 | C3×C12 | C62 | C3×C6 | C6×C12 | C3×C12 | C3×C12 | C62 | C2×C12 | C3×C6 | C12 | C12 | C2×C6 | C6 | C2×C4 | C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 8 | 4 | 4 | 16 | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 8 | 1 | 1 | 1 | 1 | 4 |
Matrix representation of C2×He3⋊3C8 ►in GL8(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 55 | 20 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 55 | 20 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 55 | 20 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 18 |
G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,0,0,0,55,2,0,0,0,0,0,0,20,18,0,0,0,0,0,0,0,0,55,2,0,0,0,0,0,0,20,18,0,0,0,0,0,0,0,0,55,2,0,0,0,0,0,0,20,18] >;
C2×He3⋊3C8 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3\rtimes_3C_8
% in TeX
G:=Group("C2xHe3:3C8");
// GroupNames label
G:=SmallGroup(432,136);
// by ID
G=gap.SmallGroup(432,136);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,80,4037,2035,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1,d*e=e*d>;
// generators/relations