d | ρ | Label | ID | ||
---|---|---|---|---|---|
C4xS3xC3:S3 | 72 | C4xS3xC3:S3 | 432,670 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C4xC3:S3):1S3 = C12:S3:S3 | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 72 | 12+ | (C4xC3:S3):1S3 | 432,295 |
(C4xC3:S3):2S3 = C12.S32 | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 72 | 12- | (C4xC3:S3):2S3 | 432,299 |
(C4xC3:S3):3S3 = C3:S3:D12 | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 36 | 12+ | (C4xC3:S3):3S3 | 432,301 |
(C4xC3:S3):4S3 = C12.91S32 | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 72 | 6 | (C4xC3:S3):4S3 | 432,297 |
(C4xC3:S3):5S3 = C4xC32:D6 | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 36 | 6 | (C4xC3:S3):5S3 | 432,300 |
(C4xC3:S3):6S3 = (C3xD12):S3 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 144 | (C4xC3:S3):6S3 | 432,661 | |
(C4xC3:S3):7S3 = C12.40S32 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 72 | (C4xC3:S3):7S3 | 432,665 | |
(C4xC3:S3):8S3 = C3:S3xD12 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 72 | (C4xC3:S3):8S3 | 432,672 | |
(C4xC3:S3):9S3 = C12:S3:12S3 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3):9S3 | 432,688 |
(C4xC3:S3):10S3 = C12:3S32 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3):10S3 | 432,691 |
(C4xC3:S3):11S3 = C12.73S32 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 72 | (C4xC3:S3):11S3 | 432,667 | |
(C4xC3:S3):12S3 = C12.95S32 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3):12S3 | 432,689 |
(C4xC3:S3):13S3 = C4xC32:4D6 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3):13S3 | 432,690 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C4xC3:S3).1S3 = C3:S3:Dic6 | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 72 | 12- | (C4xC3:S3).1S3 | 432,294 |
(C4xC3:S3).2S3 = C32:C6:C8 | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 72 | 6 | (C4xC3:S3).2S3 | 432,76 |
(C4xC3:S3).3S3 = He3:M4(2) | φ: S3/C1 → S3 ⊆ Out C4xC3:S3 | 72 | 6 | (C4xC3:S3).3S3 | 432,77 |
(C4xC3:S3).4S3 = C3:S3xDic6 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 144 | (C4xC3:S3).4S3 | 432,663 | |
(C4xC3:S3).5S3 = C3:S3:4Dic6 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3).5S3 | 432,687 |
(C4xC3:S3).6S3 = C33:8M4(2) | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 144 | (C4xC3:S3).6S3 | 432,434 | |
(C4xC3:S3).7S3 = C12.93S32 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3).7S3 | 432,455 |
(C4xC3:S3).8S3 = C33:10M4(2) | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3).8S3 | 432,456 |
(C4xC3:S3).9S3 = C33:7(C2xC8) | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3).9S3 | 432,635 |
(C4xC3:S3).10S3 = C33:4M4(2) | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3).10S3 | 432,636 |
(C4xC3:S3).11S3 = C4xC33:C4 | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3).11S3 | 432,637 |
(C4xC3:S3).12S3 = C33:9(C4:C4) | φ: S3/C3 → C2 ⊆ Out C4xC3:S3 | 48 | 4 | (C4xC3:S3).12S3 | 432,638 |
(C4xC3:S3).13S3 = C3:S3xC3:C8 | φ: trivial image | 144 | (C4xC3:S3).13S3 | 432,431 |