Extensions 1→N→G→Q→1 with N=C4xC3:S3 and Q=S3

Direct product G=NxQ with N=C4xC3:S3 and Q=S3
dρLabelID
C4xS3xC3:S372C4xS3xC3:S3432,670

Semidirect products G=N:Q with N=C4xC3:S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xC3:S3):1S3 = C12:S3:S3φ: S3/C1S3 ⊆ Out C4xC3:S37212+(C4xC3:S3):1S3432,295
(C4xC3:S3):2S3 = C12.S32φ: S3/C1S3 ⊆ Out C4xC3:S37212-(C4xC3:S3):2S3432,299
(C4xC3:S3):3S3 = C3:S3:D12φ: S3/C1S3 ⊆ Out C4xC3:S33612+(C4xC3:S3):3S3432,301
(C4xC3:S3):4S3 = C12.91S32φ: S3/C1S3 ⊆ Out C4xC3:S3726(C4xC3:S3):4S3432,297
(C4xC3:S3):5S3 = C4xC32:D6φ: S3/C1S3 ⊆ Out C4xC3:S3366(C4xC3:S3):5S3432,300
(C4xC3:S3):6S3 = (C3xD12):S3φ: S3/C3C2 ⊆ Out C4xC3:S3144(C4xC3:S3):6S3432,661
(C4xC3:S3):7S3 = C12.40S32φ: S3/C3C2 ⊆ Out C4xC3:S372(C4xC3:S3):7S3432,665
(C4xC3:S3):8S3 = C3:S3xD12φ: S3/C3C2 ⊆ Out C4xC3:S372(C4xC3:S3):8S3432,672
(C4xC3:S3):9S3 = C12:S3:12S3φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3):9S3432,688
(C4xC3:S3):10S3 = C12:3S32φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3):10S3432,691
(C4xC3:S3):11S3 = C12.73S32φ: S3/C3C2 ⊆ Out C4xC3:S372(C4xC3:S3):11S3432,667
(C4xC3:S3):12S3 = C12.95S32φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3):12S3432,689
(C4xC3:S3):13S3 = C4xC32:4D6φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3):13S3432,690

Non-split extensions G=N.Q with N=C4xC3:S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xC3:S3).1S3 = C3:S3:Dic6φ: S3/C1S3 ⊆ Out C4xC3:S37212-(C4xC3:S3).1S3432,294
(C4xC3:S3).2S3 = C32:C6:C8φ: S3/C1S3 ⊆ Out C4xC3:S3726(C4xC3:S3).2S3432,76
(C4xC3:S3).3S3 = He3:M4(2)φ: S3/C1S3 ⊆ Out C4xC3:S3726(C4xC3:S3).3S3432,77
(C4xC3:S3).4S3 = C3:S3xDic6φ: S3/C3C2 ⊆ Out C4xC3:S3144(C4xC3:S3).4S3432,663
(C4xC3:S3).5S3 = C3:S3:4Dic6φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3).5S3432,687
(C4xC3:S3).6S3 = C33:8M4(2)φ: S3/C3C2 ⊆ Out C4xC3:S3144(C4xC3:S3).6S3432,434
(C4xC3:S3).7S3 = C12.93S32φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3).7S3432,455
(C4xC3:S3).8S3 = C33:10M4(2)φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3).8S3432,456
(C4xC3:S3).9S3 = C33:7(C2xC8)φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3).9S3432,635
(C4xC3:S3).10S3 = C33:4M4(2)φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3).10S3432,636
(C4xC3:S3).11S3 = C4xC33:C4φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3).11S3432,637
(C4xC3:S3).12S3 = C33:9(C4:C4)φ: S3/C3C2 ⊆ Out C4xC3:S3484(C4xC3:S3).12S3432,638
(C4xC3:S3).13S3 = C3:S3xC3:C8φ: trivial image144(C4xC3:S3).13S3432,431

׿
x
:
Z
F
o
wr
Q
<