non-abelian, supersoluble, monomial
Aliases: He3⋊2M4(2), C12.88S32, He3⋊4C8⋊5C2, He3⋊3C8⋊6C2, C32⋊4C8⋊5S3, (C3×C12).36D6, C32⋊C12.1C4, C6.12(S3×Dic3), C32⋊(C4.Dic3), C32⋊1(C8⋊S3), C3⋊Dic3.2Dic3, C4.14(C32⋊D6), C3.2(D6.Dic3), (C4×He3).28C22, (C4×C3⋊S3).3S3, (C3×C6).2(C4×S3), (C4×C32⋊C6).1C2, (C2×C32⋊C6).2C4, (C2×He3).9(C2×C4), (C2×C3⋊S3).2Dic3, (C3×C6).2(C2×Dic3), C2.3(C6.S32), SmallGroup(432,77)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊M4(2)
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=c-1, ce=ec, ede=d5 >
Subgroups: 371 in 78 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C4.Dic3, C32⋊C6, C2×He3, C3×C3⋊C8, C32⋊4C8, S3×C12, C4×C3⋊S3, C32⋊C12, C4×He3, C2×C32⋊C6, D6.Dic3, C12.31D6, He3⋊3C8, He3⋊4C8, C4×C32⋊C6, He3⋊M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C4×S3, C2×Dic3, S32, C8⋊S3, C4.Dic3, S3×Dic3, C32⋊D6, D6.Dic3, C6.S32, He3⋊M4(2)
(9 60 22)(10 23 61)(11 62 24)(12 17 63)(13 64 18)(14 19 57)(15 58 20)(16 21 59)(41 52 69)(42 70 53)(43 54 71)(44 72 55)(45 56 65)(46 66 49)(47 50 67)(48 68 51)
(1 31 34)(2 32 35)(3 25 36)(4 26 37)(5 27 38)(6 28 39)(7 29 40)(8 30 33)(9 60 22)(10 61 23)(11 62 24)(12 63 17)(13 64 18)(14 57 19)(15 58 20)(16 59 21)(41 69 52)(42 70 53)(43 71 54)(44 72 55)(45 65 56)(46 66 49)(47 67 50)(48 68 51)
(1 47 11)(2 12 48)(3 41 13)(4 14 42)(5 43 15)(6 16 44)(7 45 9)(8 10 46)(17 51 35)(18 36 52)(19 53 37)(20 38 54)(21 55 39)(22 40 56)(23 49 33)(24 34 50)(25 69 64)(26 57 70)(27 71 58)(28 59 72)(29 65 60)(30 61 66)(31 67 62)(32 63 68)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 6)(4 8)(10 14)(12 16)(17 59)(18 64)(19 61)(20 58)(21 63)(22 60)(23 57)(24 62)(25 36)(26 33)(27 38)(28 35)(29 40)(30 37)(31 34)(32 39)(42 46)(44 48)(49 70)(50 67)(51 72)(52 69)(53 66)(54 71)(55 68)(56 65)
G:=sub<Sym(72)| (9,60,22)(10,23,61)(11,62,24)(12,17,63)(13,64,18)(14,19,57)(15,58,20)(16,21,59)(41,52,69)(42,70,53)(43,54,71)(44,72,55)(45,56,65)(46,66,49)(47,50,67)(48,68,51), (1,31,34)(2,32,35)(3,25,36)(4,26,37)(5,27,38)(6,28,39)(7,29,40)(8,30,33)(9,60,22)(10,61,23)(11,62,24)(12,63,17)(13,64,18)(14,57,19)(15,58,20)(16,59,21)(41,69,52)(42,70,53)(43,71,54)(44,72,55)(45,65,56)(46,66,49)(47,67,50)(48,68,51), (1,47,11)(2,12,48)(3,41,13)(4,14,42)(5,43,15)(6,16,44)(7,45,9)(8,10,46)(17,51,35)(18,36,52)(19,53,37)(20,38,54)(21,55,39)(22,40,56)(23,49,33)(24,34,50)(25,69,64)(26,57,70)(27,71,58)(28,59,72)(29,65,60)(30,61,66)(31,67,62)(32,63,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(10,14)(12,16)(17,59)(18,64)(19,61)(20,58)(21,63)(22,60)(23,57)(24,62)(25,36)(26,33)(27,38)(28,35)(29,40)(30,37)(31,34)(32,39)(42,46)(44,48)(49,70)(50,67)(51,72)(52,69)(53,66)(54,71)(55,68)(56,65)>;
G:=Group( (9,60,22)(10,23,61)(11,62,24)(12,17,63)(13,64,18)(14,19,57)(15,58,20)(16,21,59)(41,52,69)(42,70,53)(43,54,71)(44,72,55)(45,56,65)(46,66,49)(47,50,67)(48,68,51), (1,31,34)(2,32,35)(3,25,36)(4,26,37)(5,27,38)(6,28,39)(7,29,40)(8,30,33)(9,60,22)(10,61,23)(11,62,24)(12,63,17)(13,64,18)(14,57,19)(15,58,20)(16,59,21)(41,69,52)(42,70,53)(43,71,54)(44,72,55)(45,65,56)(46,66,49)(47,67,50)(48,68,51), (1,47,11)(2,12,48)(3,41,13)(4,14,42)(5,43,15)(6,16,44)(7,45,9)(8,10,46)(17,51,35)(18,36,52)(19,53,37)(20,38,54)(21,55,39)(22,40,56)(23,49,33)(24,34,50)(25,69,64)(26,57,70)(27,71,58)(28,59,72)(29,65,60)(30,61,66)(31,67,62)(32,63,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(10,14)(12,16)(17,59)(18,64)(19,61)(20,58)(21,63)(22,60)(23,57)(24,62)(25,36)(26,33)(27,38)(28,35)(29,40)(30,37)(31,34)(32,39)(42,46)(44,48)(49,70)(50,67)(51,72)(52,69)(53,66)(54,71)(55,68)(56,65) );
G=PermutationGroup([[(9,60,22),(10,23,61),(11,62,24),(12,17,63),(13,64,18),(14,19,57),(15,58,20),(16,21,59),(41,52,69),(42,70,53),(43,54,71),(44,72,55),(45,56,65),(46,66,49),(47,50,67),(48,68,51)], [(1,31,34),(2,32,35),(3,25,36),(4,26,37),(5,27,38),(6,28,39),(7,29,40),(8,30,33),(9,60,22),(10,61,23),(11,62,24),(12,63,17),(13,64,18),(14,57,19),(15,58,20),(16,59,21),(41,69,52),(42,70,53),(43,71,54),(44,72,55),(45,65,56),(46,66,49),(47,67,50),(48,68,51)], [(1,47,11),(2,12,48),(3,41,13),(4,14,42),(5,43,15),(6,16,44),(7,45,9),(8,10,46),(17,51,35),(18,36,52),(19,53,37),(20,38,54),(21,55,39),(22,40,56),(23,49,33),(24,34,50),(25,69,64),(26,57,70),(27,71,58),(28,59,72),(29,65,60),(30,61,66),(31,67,62),(32,63,68)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,6),(4,8),(10,14),(12,16),(17,59),(18,64),(19,61),(20,58),(21,63),(22,60),(23,57),(24,62),(25,36),(26,33),(27,38),(28,35),(29,40),(30,37),(31,34),(32,39),(42,46),(44,48),(49,70),(50,67),(51,72),(52,69),(53,66),(54,71),(55,68),(56,65)]])
38 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 24A | ··· | 24H |
order | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 18 | 2 | 6 | 6 | 12 | 1 | 1 | 18 | 2 | 6 | 6 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 12 | 18 | 18 | 18 | ··· | 18 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | + | + | - | + | - | + | - | + | |||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | S3 | Dic3 | D6 | Dic3 | M4(2) | C4×S3 | C8⋊S3 | C4.Dic3 | S32 | S3×Dic3 | D6.Dic3 | C32⋊D6 | C6.S32 | He3⋊M4(2) |
kernel | He3⋊M4(2) | He3⋊3C8 | He3⋊4C8 | C4×C32⋊C6 | C32⋊C12 | C2×C32⋊C6 | C32⋊4C8 | C4×C3⋊S3 | C3⋊Dic3 | C3×C12 | C2×C3⋊S3 | He3 | C3×C6 | C32 | C32 | C12 | C6 | C3 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of He3⋊M4(2) ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
3 | 6 | 0 | 0 | 0 | 0 |
67 | 70 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 6 |
0 | 0 | 0 | 0 | 67 | 70 |
0 | 0 | 3 | 6 | 0 | 0 |
0 | 0 | 67 | 70 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[3,67,0,0,0,0,6,70,0,0,0,0,0,0,0,0,3,67,0,0,0,0,6,70,0,0,3,67,0,0,0,0,6,70,0,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;
He3⋊M4(2) in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes M_4(2)
% in TeX
G:=Group("He3:M4(2)");
// GroupNames label
G:=SmallGroup(432,77);
// by ID
G=gap.SmallGroup(432,77);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,36,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^5>;
// generators/relations