Copied to
clipboard

G = He3⋊M4(2)  order 432 = 24·33

1st semidirect product of He3 and M4(2) acting via M4(2)/C4=C22

non-abelian, supersoluble, monomial

Aliases: He32M4(2), C12.88S32, He34C85C2, He33C86C2, C324C85S3, (C3×C12).36D6, C32⋊C12.1C4, C6.12(S3×Dic3), C32⋊(C4.Dic3), C321(C8⋊S3), C3⋊Dic3.2Dic3, C4.14(C32⋊D6), C3.2(D6.Dic3), (C4×He3).28C22, (C4×C3⋊S3).3S3, (C3×C6).2(C4×S3), (C4×C32⋊C6).1C2, (C2×C32⋊C6).2C4, (C2×He3).9(C2×C4), (C2×C3⋊S3).2Dic3, (C3×C6).2(C2×Dic3), C2.3(C6.S32), SmallGroup(432,77)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — He3⋊M4(2)
C1C3C32He3C2×He3C4×He3C4×C32⋊C6 — He3⋊M4(2)
He3C2×He3 — He3⋊M4(2)
C1C4

Generators and relations for He3⋊M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=c-1, ce=ec, ede=d5 >

Subgroups: 371 in 78 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C4.Dic3, C32⋊C6, C2×He3, C3×C3⋊C8, C324C8, S3×C12, C4×C3⋊S3, C32⋊C12, C4×He3, C2×C32⋊C6, D6.Dic3, C12.31D6, He33C8, He34C8, C4×C32⋊C6, He3⋊M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C4×S3, C2×Dic3, S32, C8⋊S3, C4.Dic3, S3×Dic3, C32⋊D6, D6.Dic3, C6.S32, He3⋊M4(2)

Smallest permutation representation of He3⋊M4(2)
On 72 points
Generators in S72
(9 60 22)(10 23 61)(11 62 24)(12 17 63)(13 64 18)(14 19 57)(15 58 20)(16 21 59)(41 52 69)(42 70 53)(43 54 71)(44 72 55)(45 56 65)(46 66 49)(47 50 67)(48 68 51)
(1 31 34)(2 32 35)(3 25 36)(4 26 37)(5 27 38)(6 28 39)(7 29 40)(8 30 33)(9 60 22)(10 61 23)(11 62 24)(12 63 17)(13 64 18)(14 57 19)(15 58 20)(16 59 21)(41 69 52)(42 70 53)(43 71 54)(44 72 55)(45 65 56)(46 66 49)(47 67 50)(48 68 51)
(1 47 11)(2 12 48)(3 41 13)(4 14 42)(5 43 15)(6 16 44)(7 45 9)(8 10 46)(17 51 35)(18 36 52)(19 53 37)(20 38 54)(21 55 39)(22 40 56)(23 49 33)(24 34 50)(25 69 64)(26 57 70)(27 71 58)(28 59 72)(29 65 60)(30 61 66)(31 67 62)(32 63 68)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 6)(4 8)(10 14)(12 16)(17 59)(18 64)(19 61)(20 58)(21 63)(22 60)(23 57)(24 62)(25 36)(26 33)(27 38)(28 35)(29 40)(30 37)(31 34)(32 39)(42 46)(44 48)(49 70)(50 67)(51 72)(52 69)(53 66)(54 71)(55 68)(56 65)

G:=sub<Sym(72)| (9,60,22)(10,23,61)(11,62,24)(12,17,63)(13,64,18)(14,19,57)(15,58,20)(16,21,59)(41,52,69)(42,70,53)(43,54,71)(44,72,55)(45,56,65)(46,66,49)(47,50,67)(48,68,51), (1,31,34)(2,32,35)(3,25,36)(4,26,37)(5,27,38)(6,28,39)(7,29,40)(8,30,33)(9,60,22)(10,61,23)(11,62,24)(12,63,17)(13,64,18)(14,57,19)(15,58,20)(16,59,21)(41,69,52)(42,70,53)(43,71,54)(44,72,55)(45,65,56)(46,66,49)(47,67,50)(48,68,51), (1,47,11)(2,12,48)(3,41,13)(4,14,42)(5,43,15)(6,16,44)(7,45,9)(8,10,46)(17,51,35)(18,36,52)(19,53,37)(20,38,54)(21,55,39)(22,40,56)(23,49,33)(24,34,50)(25,69,64)(26,57,70)(27,71,58)(28,59,72)(29,65,60)(30,61,66)(31,67,62)(32,63,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(10,14)(12,16)(17,59)(18,64)(19,61)(20,58)(21,63)(22,60)(23,57)(24,62)(25,36)(26,33)(27,38)(28,35)(29,40)(30,37)(31,34)(32,39)(42,46)(44,48)(49,70)(50,67)(51,72)(52,69)(53,66)(54,71)(55,68)(56,65)>;

G:=Group( (9,60,22)(10,23,61)(11,62,24)(12,17,63)(13,64,18)(14,19,57)(15,58,20)(16,21,59)(41,52,69)(42,70,53)(43,54,71)(44,72,55)(45,56,65)(46,66,49)(47,50,67)(48,68,51), (1,31,34)(2,32,35)(3,25,36)(4,26,37)(5,27,38)(6,28,39)(7,29,40)(8,30,33)(9,60,22)(10,61,23)(11,62,24)(12,63,17)(13,64,18)(14,57,19)(15,58,20)(16,59,21)(41,69,52)(42,70,53)(43,71,54)(44,72,55)(45,65,56)(46,66,49)(47,67,50)(48,68,51), (1,47,11)(2,12,48)(3,41,13)(4,14,42)(5,43,15)(6,16,44)(7,45,9)(8,10,46)(17,51,35)(18,36,52)(19,53,37)(20,38,54)(21,55,39)(22,40,56)(23,49,33)(24,34,50)(25,69,64)(26,57,70)(27,71,58)(28,59,72)(29,65,60)(30,61,66)(31,67,62)(32,63,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(10,14)(12,16)(17,59)(18,64)(19,61)(20,58)(21,63)(22,60)(23,57)(24,62)(25,36)(26,33)(27,38)(28,35)(29,40)(30,37)(31,34)(32,39)(42,46)(44,48)(49,70)(50,67)(51,72)(52,69)(53,66)(54,71)(55,68)(56,65) );

G=PermutationGroup([[(9,60,22),(10,23,61),(11,62,24),(12,17,63),(13,64,18),(14,19,57),(15,58,20),(16,21,59),(41,52,69),(42,70,53),(43,54,71),(44,72,55),(45,56,65),(46,66,49),(47,50,67),(48,68,51)], [(1,31,34),(2,32,35),(3,25,36),(4,26,37),(5,27,38),(6,28,39),(7,29,40),(8,30,33),(9,60,22),(10,61,23),(11,62,24),(12,63,17),(13,64,18),(14,57,19),(15,58,20),(16,59,21),(41,69,52),(42,70,53),(43,71,54),(44,72,55),(45,65,56),(46,66,49),(47,67,50),(48,68,51)], [(1,47,11),(2,12,48),(3,41,13),(4,14,42),(5,43,15),(6,16,44),(7,45,9),(8,10,46),(17,51,35),(18,36,52),(19,53,37),(20,38,54),(21,55,39),(22,40,56),(23,49,33),(24,34,50),(25,69,64),(26,57,70),(27,71,58),(28,59,72),(29,65,60),(30,61,66),(31,67,62),(32,63,68)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,6),(4,8),(10,14),(12,16),(17,59),(18,64),(19,61),(20,58),(21,63),(22,60),(23,57),(24,62),(25,36),(26,33),(27,38),(28,35),(29,40),(30,37),(31,34),(32,39),(42,46),(44,48),(49,70),(50,67),(51,72),(52,69),(53,66),(54,71),(55,68),(56,65)]])

38 conjugacy classes

class 1 2A2B3A3B3C3D4A4B4C6A6B6C6D6E6F8A8B8C8D12A12B12C12D12E12F12G12H12I12J24A···24H
order122333344466666688881212121212121212121224···24
size1118266121118266121818181818182266661212181818···18

38 irreducible representations

dim111111222222222444666
type++++++-+-+-+
imageC1C2C2C2C4C4S3S3Dic3D6Dic3M4(2)C4×S3C8⋊S3C4.Dic3S32S3×Dic3D6.Dic3C32⋊D6C6.S32He3⋊M4(2)
kernelHe3⋊M4(2)He33C8He34C8C4×C32⋊C6C32⋊C12C2×C32⋊C6C324C8C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3He3C3×C6C32C32C12C6C3C4C2C1
# reps111122111212244112224

Matrix representation of He3⋊M4(2) in GL6(𝔽73)

100000
010000
000100
00727200
00007272
000010
,
010000
72720000
000100
00727200
000001
00007272
,
001000
000100
000010
000001
100000
010000
,
360000
67700000
000036
00006770
003600
00677000
,
100000
72720000
001000
00727200
000010
00007272

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[3,67,0,0,0,0,6,70,0,0,0,0,0,0,0,0,3,67,0,0,0,0,6,70,0,0,3,67,0,0,0,0,6,70,0,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

He3⋊M4(2) in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes M_4(2)
% in TeX

G:=Group("He3:M4(2)");
// GroupNames label

G:=SmallGroup(432,77);
// by ID

G=gap.SmallGroup(432,77);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,36,58,571,4037,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^5>;
// generators/relations

׿
×
𝔽