Extensions 1→N→G→Q→1 with N=C3xC3:Dic3 and Q=C4

Direct product G=NxQ with N=C3xC3:Dic3 and Q=C4
dρLabelID
C12xC3:Dic3144C12xC3:Dic3432,487

Semidirect products G=N:Q with N=C3xC3:Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xC3:Dic3):1C4 = C3xDic32φ: C4/C2C2 ⊆ Out C3xC3:Dic348(C3xC3:Dic3):1C4432,425
(C3xC3:Dic3):2C4 = C12xC32:C4φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3):2C4432,630
(C3xC3:Dic3):3C4 = C62.82D6φ: C4/C2C2 ⊆ Out C3xC3:Dic3144(C3xC3:Dic3):3C4432,454
(C3xC3:Dic3):4C4 = C62.85D6φ: C4/C2C2 ⊆ Out C3xC3:Dic348(C3xC3:Dic3):4C4432,462
(C3xC3:Dic3):5C4 = C33:9(C4:C4)φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3):5C4432,638
(C3xC3:Dic3):6C4 = Dic3xC3:Dic3φ: C4/C2C2 ⊆ Out C3xC3:Dic3144(C3xC3:Dic3):6C4432,448
(C3xC3:Dic3):7C4 = C33:6C42φ: C4/C2C2 ⊆ Out C3xC3:Dic348(C3xC3:Dic3):7C4432,460
(C3xC3:Dic3):8C4 = C4xC33:C4φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3):8C4432,637
(C3xC3:Dic3):9C4 = C3xC62.C22φ: C4/C2C2 ⊆ Out C3xC3:Dic348(C3xC3:Dic3):9C4432,429
(C3xC3:Dic3):10C4 = C3xC6.Dic6φ: C4/C2C2 ⊆ Out C3xC3:Dic3144(C3xC3:Dic3):10C4432,488
(C3xC3:Dic3):11C4 = C3xC4:(C32:C4)φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3):11C4432,631

Non-split extensions G=N.Q with N=C3xC3:Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xC3:Dic3).1C4 = C3xC2.F9φ: C4/C1C4 ⊆ Out C3xC3:Dic3488(C3xC3:Dic3).1C4432,565
(C3xC3:Dic3).2C4 = C6.F9φ: C4/C1C4 ⊆ Out C3xC3:Dic3488(C3xC3:Dic3).2C4432,566
(C3xC3:Dic3).3C4 = C3xC12.29D6φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3).3C4432,415
(C3xC3:Dic3).4C4 = C6xC32:2C8φ: C4/C2C2 ⊆ Out C3xC3:Dic348(C3xC3:Dic3).4C4432,632
(C3xC3:Dic3).5C4 = C33:8M4(2)φ: C4/C2C2 ⊆ Out C3xC3:Dic3144(C3xC3:Dic3).5C4432,434
(C3xC3:Dic3).6C4 = C33:10M4(2)φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3).6C4432,456
(C3xC3:Dic3).7C4 = C33:12M4(2)φ: C4/C2C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3).7C4432,640
(C3xC3:Dic3).8C4 = C3:S3xC3:C8φ: C4/C2C2 ⊆ Out C3xC3:Dic3144(C3xC3:Dic3).8C4432,431
(C3xC3:Dic3).9C4 = C12.93S32φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3).9C4432,455
(C3xC3:Dic3).10C4 = C2xC33:4C8φ: C4/C2C2 ⊆ Out C3xC3:Dic348(C3xC3:Dic3).10C4432,639
(C3xC3:Dic3).11C4 = C3xC12.31D6φ: C4/C2C2 ⊆ Out C3xC3:Dic3484(C3xC3:Dic3).11C4432,417
(C3xC3:Dic3).12C4 = C3xC24:S3φ: C4/C2C2 ⊆ Out C3xC3:Dic3144(C3xC3:Dic3).12C4432,481
(C3xC3:Dic3).13C4 = C3xC62.C4φ: C4/C2C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3).13C4432,633
(C3xC3:Dic3).14C4 = C3:S3xC24φ: trivial image144(C3xC3:Dic3).14C4432,480

׿
x
:
Z
F
o
wr
Q
<