Copied to
clipboard

G = C3×C24⋊S3order 432 = 24·33

Direct product of C3 and C24⋊S3

direct product, metabelian, supersoluble, monomial

Aliases: C3×C24⋊S3, C3314M4(2), C245(C3×S3), C247(C3⋊S3), (C3×C24)⋊16C6, (C3×C24)⋊17S3, C6.24(S3×C12), C12.102(S3×C6), (C32×C24)⋊13C2, C324C815C6, (C3×C12).224D6, C3⋊Dic3.6C12, C329(C3×M4(2)), C3211(C8⋊S3), (C32×C12).92C22, C83(C3×C3⋊S3), C32(C3×C8⋊S3), (C4×C3⋊S3).8C6, (C6×C3⋊S3).9C4, C2.3(C12×C3⋊S3), C6.25(C4×C3⋊S3), C4.13(C6×C3⋊S3), (C2×C3⋊S3).6C12, C12.95(C2×C3⋊S3), (C3×C6).76(C4×S3), (C12×C3⋊S3).17C2, (C3×C12).97(C2×C6), (C3×C6).48(C2×C12), (C3×C324C8)⋊19C2, (C3×C3⋊Dic3).12C4, (C32×C6).55(C2×C4), SmallGroup(432,481)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3×C24⋊S3
C1C3C32C3×C6C3×C12C32×C12C12×C3⋊S3 — C3×C24⋊S3
C32C3×C6 — C3×C24⋊S3
C1C12C24

Generators and relations for C3×C24⋊S3
 G = < a,b,c,d | a3=b24=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b5, dcd=c-1 >

Subgroups: 420 in 152 conjugacy classes, 58 normal (26 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C24, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C3×M4(2), C3×C3⋊S3, C32×C6, C3×C3⋊C8, C324C8, C3×C24, C3×C24, C3×C24, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C3×C8⋊S3, C24⋊S3, C3×C324C8, C32×C24, C12×C3⋊S3, C3×C24⋊S3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C4×S3, C2×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C3×M4(2), C3×C3⋊S3, S3×C12, C4×C3⋊S3, C6×C3⋊S3, C3×C8⋊S3, C24⋊S3, C12×C3⋊S3, C3×C24⋊S3

Smallest permutation representation of C3×C24⋊S3
On 144 points
Generators in S144
(1 54 38)(2 55 39)(3 56 40)(4 57 41)(5 58 42)(6 59 43)(7 60 44)(8 61 45)(9 62 46)(10 63 47)(11 64 48)(12 65 25)(13 66 26)(14 67 27)(15 68 28)(16 69 29)(17 70 30)(18 71 31)(19 72 32)(20 49 33)(21 50 34)(22 51 35)(23 52 36)(24 53 37)(73 121 99)(74 122 100)(75 123 101)(76 124 102)(77 125 103)(78 126 104)(79 127 105)(80 128 106)(81 129 107)(82 130 108)(83 131 109)(84 132 110)(85 133 111)(86 134 112)(87 135 113)(88 136 114)(89 137 115)(90 138 116)(91 139 117)(92 140 118)(93 141 119)(94 142 120)(95 143 97)(96 144 98)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 30 62)(2 31 63)(3 32 64)(4 33 65)(5 34 66)(6 35 67)(7 36 68)(8 37 69)(9 38 70)(10 39 71)(11 40 72)(12 41 49)(13 42 50)(14 43 51)(15 44 52)(16 45 53)(17 46 54)(18 47 55)(19 48 56)(20 25 57)(21 26 58)(22 27 59)(23 28 60)(24 29 61)(73 137 107)(74 138 108)(75 139 109)(76 140 110)(77 141 111)(78 142 112)(79 143 113)(80 144 114)(81 121 115)(82 122 116)(83 123 117)(84 124 118)(85 125 119)(86 126 120)(87 127 97)(88 128 98)(89 129 99)(90 130 100)(91 131 101)(92 132 102)(93 133 103)(94 134 104)(95 135 105)(96 136 106)
(1 112)(2 117)(3 98)(4 103)(5 108)(6 113)(7 118)(8 99)(9 104)(10 109)(11 114)(12 119)(13 100)(14 105)(15 110)(16 115)(17 120)(18 101)(19 106)(20 111)(21 116)(22 97)(23 102)(24 107)(25 141)(26 122)(27 127)(28 132)(29 137)(30 142)(31 123)(32 128)(33 133)(34 138)(35 143)(36 124)(37 129)(38 134)(39 139)(40 144)(41 125)(42 130)(43 135)(44 140)(45 121)(46 126)(47 131)(48 136)(49 85)(50 90)(51 95)(52 76)(53 81)(54 86)(55 91)(56 96)(57 77)(58 82)(59 87)(60 92)(61 73)(62 78)(63 83)(64 88)(65 93)(66 74)(67 79)(68 84)(69 89)(70 94)(71 75)(72 80)

G:=sub<Sym(144)| (1,54,38)(2,55,39)(3,56,40)(4,57,41)(5,58,42)(6,59,43)(7,60,44)(8,61,45)(9,62,46)(10,63,47)(11,64,48)(12,65,25)(13,66,26)(14,67,27)(15,68,28)(16,69,29)(17,70,30)(18,71,31)(19,72,32)(20,49,33)(21,50,34)(22,51,35)(23,52,36)(24,53,37)(73,121,99)(74,122,100)(75,123,101)(76,124,102)(77,125,103)(78,126,104)(79,127,105)(80,128,106)(81,129,107)(82,130,108)(83,131,109)(84,132,110)(85,133,111)(86,134,112)(87,135,113)(88,136,114)(89,137,115)(90,138,116)(91,139,117)(92,140,118)(93,141,119)(94,142,120)(95,143,97)(96,144,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,30,62)(2,31,63)(3,32,64)(4,33,65)(5,34,66)(6,35,67)(7,36,68)(8,37,69)(9,38,70)(10,39,71)(11,40,72)(12,41,49)(13,42,50)(14,43,51)(15,44,52)(16,45,53)(17,46,54)(18,47,55)(19,48,56)(20,25,57)(21,26,58)(22,27,59)(23,28,60)(24,29,61)(73,137,107)(74,138,108)(75,139,109)(76,140,110)(77,141,111)(78,142,112)(79,143,113)(80,144,114)(81,121,115)(82,122,116)(83,123,117)(84,124,118)(85,125,119)(86,126,120)(87,127,97)(88,128,98)(89,129,99)(90,130,100)(91,131,101)(92,132,102)(93,133,103)(94,134,104)(95,135,105)(96,136,106), (1,112)(2,117)(3,98)(4,103)(5,108)(6,113)(7,118)(8,99)(9,104)(10,109)(11,114)(12,119)(13,100)(14,105)(15,110)(16,115)(17,120)(18,101)(19,106)(20,111)(21,116)(22,97)(23,102)(24,107)(25,141)(26,122)(27,127)(28,132)(29,137)(30,142)(31,123)(32,128)(33,133)(34,138)(35,143)(36,124)(37,129)(38,134)(39,139)(40,144)(41,125)(42,130)(43,135)(44,140)(45,121)(46,126)(47,131)(48,136)(49,85)(50,90)(51,95)(52,76)(53,81)(54,86)(55,91)(56,96)(57,77)(58,82)(59,87)(60,92)(61,73)(62,78)(63,83)(64,88)(65,93)(66,74)(67,79)(68,84)(69,89)(70,94)(71,75)(72,80)>;

G:=Group( (1,54,38)(2,55,39)(3,56,40)(4,57,41)(5,58,42)(6,59,43)(7,60,44)(8,61,45)(9,62,46)(10,63,47)(11,64,48)(12,65,25)(13,66,26)(14,67,27)(15,68,28)(16,69,29)(17,70,30)(18,71,31)(19,72,32)(20,49,33)(21,50,34)(22,51,35)(23,52,36)(24,53,37)(73,121,99)(74,122,100)(75,123,101)(76,124,102)(77,125,103)(78,126,104)(79,127,105)(80,128,106)(81,129,107)(82,130,108)(83,131,109)(84,132,110)(85,133,111)(86,134,112)(87,135,113)(88,136,114)(89,137,115)(90,138,116)(91,139,117)(92,140,118)(93,141,119)(94,142,120)(95,143,97)(96,144,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,30,62)(2,31,63)(3,32,64)(4,33,65)(5,34,66)(6,35,67)(7,36,68)(8,37,69)(9,38,70)(10,39,71)(11,40,72)(12,41,49)(13,42,50)(14,43,51)(15,44,52)(16,45,53)(17,46,54)(18,47,55)(19,48,56)(20,25,57)(21,26,58)(22,27,59)(23,28,60)(24,29,61)(73,137,107)(74,138,108)(75,139,109)(76,140,110)(77,141,111)(78,142,112)(79,143,113)(80,144,114)(81,121,115)(82,122,116)(83,123,117)(84,124,118)(85,125,119)(86,126,120)(87,127,97)(88,128,98)(89,129,99)(90,130,100)(91,131,101)(92,132,102)(93,133,103)(94,134,104)(95,135,105)(96,136,106), (1,112)(2,117)(3,98)(4,103)(5,108)(6,113)(7,118)(8,99)(9,104)(10,109)(11,114)(12,119)(13,100)(14,105)(15,110)(16,115)(17,120)(18,101)(19,106)(20,111)(21,116)(22,97)(23,102)(24,107)(25,141)(26,122)(27,127)(28,132)(29,137)(30,142)(31,123)(32,128)(33,133)(34,138)(35,143)(36,124)(37,129)(38,134)(39,139)(40,144)(41,125)(42,130)(43,135)(44,140)(45,121)(46,126)(47,131)(48,136)(49,85)(50,90)(51,95)(52,76)(53,81)(54,86)(55,91)(56,96)(57,77)(58,82)(59,87)(60,92)(61,73)(62,78)(63,83)(64,88)(65,93)(66,74)(67,79)(68,84)(69,89)(70,94)(71,75)(72,80) );

G=PermutationGroup([[(1,54,38),(2,55,39),(3,56,40),(4,57,41),(5,58,42),(6,59,43),(7,60,44),(8,61,45),(9,62,46),(10,63,47),(11,64,48),(12,65,25),(13,66,26),(14,67,27),(15,68,28),(16,69,29),(17,70,30),(18,71,31),(19,72,32),(20,49,33),(21,50,34),(22,51,35),(23,52,36),(24,53,37),(73,121,99),(74,122,100),(75,123,101),(76,124,102),(77,125,103),(78,126,104),(79,127,105),(80,128,106),(81,129,107),(82,130,108),(83,131,109),(84,132,110),(85,133,111),(86,134,112),(87,135,113),(88,136,114),(89,137,115),(90,138,116),(91,139,117),(92,140,118),(93,141,119),(94,142,120),(95,143,97),(96,144,98)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,30,62),(2,31,63),(3,32,64),(4,33,65),(5,34,66),(6,35,67),(7,36,68),(8,37,69),(9,38,70),(10,39,71),(11,40,72),(12,41,49),(13,42,50),(14,43,51),(15,44,52),(16,45,53),(17,46,54),(18,47,55),(19,48,56),(20,25,57),(21,26,58),(22,27,59),(23,28,60),(24,29,61),(73,137,107),(74,138,108),(75,139,109),(76,140,110),(77,141,111),(78,142,112),(79,143,113),(80,144,114),(81,121,115),(82,122,116),(83,123,117),(84,124,118),(85,125,119),(86,126,120),(87,127,97),(88,128,98),(89,129,99),(90,130,100),(91,131,101),(92,132,102),(93,133,103),(94,134,104),(95,135,105),(96,136,106)], [(1,112),(2,117),(3,98),(4,103),(5,108),(6,113),(7,118),(8,99),(9,104),(10,109),(11,114),(12,119),(13,100),(14,105),(15,110),(16,115),(17,120),(18,101),(19,106),(20,111),(21,116),(22,97),(23,102),(24,107),(25,141),(26,122),(27,127),(28,132),(29,137),(30,142),(31,123),(32,128),(33,133),(34,138),(35,143),(36,124),(37,129),(38,134),(39,139),(40,144),(41,125),(42,130),(43,135),(44,140),(45,121),(46,126),(47,131),(48,136),(49,85),(50,90),(51,95),(52,76),(53,81),(54,86),(55,91),(56,96),(57,77),(58,82),(59,87),(60,92),(61,73),(62,78),(63,83),(64,88),(65,93),(66,74),(67,79),(68,84),(69,89),(70,94),(71,75),(72,80)]])

126 conjugacy classes

class 1 2A2B3A3B3C···3N4A4B4C6A6B6C···6N6O6P8A8B8C8D12A12B12C12D12E···12AB12AC12AD24A···24AZ24BA24BB24BC24BD
order122333···3444666···66688881212121212···12121224···2424242424
size1118112···21118112···2181822181811112···218182···218181818

126 irreducible representations

dim1111111111112222222222
type++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12S3D6M4(2)C3×S3C4×S3S3×C6C8⋊S3C3×M4(2)S3×C12C3×C8⋊S3
kernelC3×C24⋊S3C3×C324C8C32×C24C12×C3⋊S3C24⋊S3C3×C3⋊Dic3C6×C3⋊S3C324C8C3×C24C4×C3⋊S3C3⋊Dic3C2×C3⋊S3C3×C24C3×C12C33C24C3×C6C12C32C32C6C3
# reps1111222222444428881641632

Matrix representation of C3×C24⋊S3 in GL4(𝔽73) generated by

8000
0800
00640
00064
,
43000
02100
00720
00072
,
1000
0100
0080
00064
,
0100
1000
0001
0010
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,64,0,0,0,0,64],[43,0,0,0,0,21,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,8,0,0,0,0,64],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C3×C24⋊S3 in GAP, Magma, Sage, TeX

C_3\times C_{24}\rtimes S_3
% in TeX

G:=Group("C3xC24:S3");
// GroupNames label

G:=SmallGroup(432,481);
// by ID

G=gap.SmallGroup(432,481);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,365,92,80,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^24=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽