Extensions 1→N→G→Q→1 with N=C3 and Q=D12⋊S3

Direct product G=N×Q with N=C3 and Q=D12⋊S3

Semidirect products G=N:Q with N=C3 and Q=D12⋊S3
extensionφ:Q→Aut NdρLabelID
C31(D12⋊S3) = D6.3S32φ: D12⋊S3/S3×Dic3C2 ⊆ Aut C3248+C3:1(D12:S3)432,609
C32(D12⋊S3) = D6.6S32φ: D12⋊S3/C3⋊D12C2 ⊆ Aut C3488-C3:2(D12:S3)432,611
C33(D12⋊S3) = C12.39S32φ: D12⋊S3/C3×Dic6C2 ⊆ Aut C372C3:3(D12:S3)432,664
C34(D12⋊S3) = D12⋊(C3⋊S3)φ: D12⋊S3/C3×D12C2 ⊆ Aut C372C3:4(D12:S3)432,662
C35(D12⋊S3) = C12⋊S312S3φ: D12⋊S3/C4×C3⋊S3C2 ⊆ Aut C3484C3:5(D12:S3)432,688

Non-split extensions G=N.Q with N=C3 and Q=D12⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(D12⋊S3) = D18.D6φ: D12⋊S3/C3×Dic6C2 ⊆ Aut C3724C3.1(D12:S3)432,281
C3.2(D12⋊S3) = D12⋊D9φ: D12⋊S3/C3×D12C2 ⊆ Aut C3724C3.2(D12:S3)432,286
C3.3(D12⋊S3) = C12.84S32φ: D12⋊S3/C4×C3⋊S3C2 ⊆ Aut C3726C3.3(D12:S3)432,296