metabelian, supersoluble, monomial
Aliases: D12:3S3, D6.2D6, Dic6:3S3, C12.22D6, Dic3.1D6, C4.11S32, (C3xD12):5C2, C3:D12:3C2, (C3xDic6):5C2, (S3xDic3):1C2, C32:2(C4oD4), (C3xC6).3C23, C6.3(C22xS3), C3:1(D4:2S3), C3:2(Q8:3S3), (S3xC6).2C22, (C3xC12).18C22, C3:Dic3.11C22, (C3xDic3).2C22, C2.6(C2xS32), (C4xC3:S3):1C2, (C2xC3:S3).11C22, SmallGroup(144,139)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12:S3
G = < a,b,c,d | a12=b2=c3=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, dbd=a10b, dcd=c-1 >
Subgroups: 288 in 88 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C4oD4, C3xS3, C3:S3, C3xC6, Dic6, C4xS3, D12, D12, C2xDic3, C3:D4, C3xD4, C3xQ8, C3xDic3, C3:Dic3, C3xC12, S3xC6, C2xC3:S3, D4:2S3, Q8:3S3, S3xDic3, C3:D12, C3xDic6, C3xD12, C4xC3:S3, D12:S3
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C22xS3, S32, D4:2S3, Q8:3S3, C2xS32, D12:S3
Character table of D12:S3
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 6 | 6 | 18 | 2 | 2 | 4 | 2 | 6 | 6 | 9 | 9 | 2 | 2 | 4 | 12 | 12 | 4 | 4 | 4 | 4 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 1 | 1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 1 | -1 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | -2 | 0 | 2 | -1 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2i | 2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4oD4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 2i | -2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4oD4 |
ρ19 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | orthogonal lifted from C2xS32 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8:3S3, Schur index 2 |
ρ21 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | orthogonal lifted from S32 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4:2S3, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 15)(2 14)(3 13)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)
(2 6)(3 11)(5 9)(8 12)(13 19)(14 24)(15 17)(16 22)(18 20)(21 23)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,15)(2,14)(3,13)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (2,6)(3,11)(5,9)(8,12)(13,19)(14,24)(15,17)(16,22)(18,20)(21,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,15)(2,14)(3,13)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (2,6)(3,11)(5,9)(8,12)(13,19)(14,24)(15,17)(16,22)(18,20)(21,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,15),(2,14),(3,13),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24)], [(2,6),(3,11),(5,9),(8,12),(13,19),(14,24),(15,17),(16,22),(18,20),(21,23)]])
G:=TransitiveGroup(24,227);
D12:S3 is a maximal subgroup of
C24:6D6 D12.2D6 D24:5S3 D12.4D6 D12.8D6 D12:5D6 D12.14D6 D12.15D6 D12.33D6 D12:23D6 D12:24D6 S3xD4:2S3 D12:13D6 D12.25D6 S3xQ8:3S3 D18.D6 D12:D9 C12:S3:S3 C12.S32 D6.3S32 D6.6S32 D12:(C3:S3) C12.39S32 C12:S3:12S3
D12:S3 is a maximal quotient of
C62.13C23 C62.16C23 C62.18C23 C62.19C23 C62.23C23 C62.28C23 C62.32C23 C62.33C23 C12.30D12 C62.42C23 C62.48C23 C62.51C23 C62.54C23 Dic3:D12 D6:1Dic6 D6.D12 D12:Dic3 C62.77C23 C12:2D12 D18.D6 D12:D9 C12.84S32 D6.3S32 D6.6S32 D12:(C3:S3) C12.39S32 C12:S3:12S3
Matrix representation of D12:S3 ►in GL4(F5) generated by
0 | 3 | 4 | 1 |
1 | 0 | 0 | 4 |
2 | 4 | 4 | 4 |
3 | 4 | 0 | 1 |
4 | 4 | 1 | 2 |
0 | 1 | 3 | 1 |
4 | 2 | 4 | 1 |
3 | 4 | 0 | 1 |
3 | 4 | 3 | 0 |
0 | 0 | 1 | 4 |
4 | 3 | 3 | 3 |
4 | 4 | 4 | 2 |
1 | 0 | 2 | 0 |
0 | 0 | 4 | 1 |
0 | 0 | 4 | 0 |
0 | 1 | 4 | 0 |
G:=sub<GL(4,GF(5))| [0,1,2,3,3,0,4,4,4,0,4,0,1,4,4,1],[4,0,4,3,4,1,2,4,1,3,4,0,2,1,1,1],[3,0,4,4,4,0,3,4,3,1,3,4,0,4,3,2],[1,0,0,0,0,0,0,1,2,4,4,4,0,1,0,0] >;
D12:S3 in GAP, Magma, Sage, TeX
D_{12}\rtimes S_3
% in TeX
G:=Group("D12:S3");
// GroupNames label
G:=SmallGroup(144,139);
// by ID
G=gap.SmallGroup(144,139);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations
Export