Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3.D6

Direct product G=NxQ with N=C3 and Q=Dic3.D6
dρLabelID
C3xDic3.D6484C3xDic3.D6432,645

Semidirect products G=N:Q with N=C3 and Q=Dic3.D6
extensionφ:Q→Aut NdρLabelID
C3:1(Dic3.D6) = C33:5(C2xQ8)φ: Dic3.D6/C6.D6C2 ⊆ Aut C3488-C3:1(Dic3.D6)432,604
C3:2(Dic3.D6) = C33:6(C2xQ8)φ: Dic3.D6/C32:2Q8C2 ⊆ Aut C3248+C3:2(Dic3.D6)432,605
C3:3(Dic3.D6) = C32:9(S3xQ8)φ: Dic3.D6/C3xDic6C2 ⊆ Aut C372C3:3(Dic3.D6)432,666
C3:4(Dic3.D6) = C3:S3:4Dic6φ: Dic3.D6/C4xC3:S3C2 ⊆ Aut C3484C3:4(Dic3.D6)432,687

Non-split extensions G=N.Q with N=C3 and Q=Dic3.D6
extensionφ:Q→Aut NdρLabelID
C3.1(Dic3.D6) = Dic18:S3φ: Dic3.D6/C3xDic6C2 ⊆ Aut C3724C3.1(Dic3.D6)432,283
C3.2(Dic3.D6) = C12.85S32φ: Dic3.D6/C4xC3:S3C2 ⊆ Aut C3726-C3.2(Dic3.D6)432,298

׿
x
:
Z
F
o
wr
Q
<