Extensions 1→N→G→Q→1 with N=C6 and Q=C3xS4

Direct product G=NxQ with N=C6 and Q=C3xS4
dρLabelID
C3xC6xS454C3xC6xS4432,760

Semidirect products G=N:Q with N=C6 and Q=C3xS4
extensionφ:Q→Aut NdρLabelID
C6:(C3xS4) = C6xC3:S4φ: C3xS4/C3xA4C2 ⊆ Aut C6366C6:(C3xS4)432,761

Non-split extensions G=N.Q with N=C6 and Q=C3xS4
extensionφ:Q→Aut NdρLabelID
C6.1(C3xS4) = C32.CSU2(F3)φ: C3xS4/C3xA4C2 ⊆ Aut C614412-C6.1(C3xS4)432,243
C6.2(C3xS4) = C3xQ8.D9φ: C3xS4/C3xA4C2 ⊆ Aut C61444C6.2(C3xS4)432,244
C6.3(C3xS4) = C32.GL2(F3)φ: C3xS4/C3xA4C2 ⊆ Aut C67212+C6.3(C3xS4)432,245
C6.4(C3xS4) = C3xQ8:D9φ: C3xS4/C3xA4C2 ⊆ Aut C61444C6.4(C3xS4)432,246
C6.5(C3xS4) = C32:CSU2(F3)φ: C3xS4/C3xA4C2 ⊆ Aut C614412-C6.5(C3xS4)432,247
C6.6(C3xS4) = C32:2GL2(F3)φ: C3xS4/C3xA4C2 ⊆ Aut C67212+C6.6(C3xS4)432,248
C6.7(C3xS4) = C62.Dic3φ: C3xS4/C3xA4C2 ⊆ Aut C6366-C6.7(C3xS4)432,249
C6.8(C3xS4) = C3xC6.S4φ: C3xS4/C3xA4C2 ⊆ Aut C6366C6.8(C3xS4)432,250
C6.9(C3xS4) = C62:5Dic3φ: C3xS4/C3xA4C2 ⊆ Aut C6366-C6.9(C3xS4)432,251
C6.10(C3xS4) = C2xC32.S4φ: C3xS4/C3xA4C2 ⊆ Aut C6186+C6.10(C3xS4)432,533
C6.11(C3xS4) = C6xC3.S4φ: C3xS4/C3xA4C2 ⊆ Aut C6366C6.11(C3xS4)432,534
C6.12(C3xS4) = C2xC62:S3φ: C3xS4/C3xA4C2 ⊆ Aut C6186+C6.12(C3xS4)432,535
C6.13(C3xS4) = C3xC6.5S4φ: C3xS4/C3xA4C2 ⊆ Aut C6484C6.13(C3xS4)432,616
C6.14(C3xS4) = C3xC6.6S4φ: C3xS4/C3xA4C2 ⊆ Aut C6484C6.14(C3xS4)432,617
C6.15(C3xS4) = C3xC6.7S4φ: C3xS4/C3xA4C2 ⊆ Aut C6366C6.15(C3xS4)432,618
C6.16(C3xS4) = C9xCSU2(F3)central extension (φ=1)1442C6.16(C3xS4)432,240
C6.17(C3xS4) = C9xGL2(F3)central extension (φ=1)722C6.17(C3xS4)432,241
C6.18(C3xS4) = C9xA4:C4central extension (φ=1)1083C6.18(C3xS4)432,242
C6.19(C3xS4) = C18xS4central extension (φ=1)543C6.19(C3xS4)432,532
C6.20(C3xS4) = C32xCSU2(F3)central extension (φ=1)144C6.20(C3xS4)432,613
C6.21(C3xS4) = C32xGL2(F3)central extension (φ=1)72C6.21(C3xS4)432,614
C6.22(C3xS4) = C32xA4:C4central extension (φ=1)108C6.22(C3xS4)432,615

׿
x
:
Z
F
o
wr
Q
<