extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3⋊S4) = C18.5S4 | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 144 | 4- | C6.1(C3:S4) | 432,252 |
C6.2(C3⋊S4) = C18.6S4 | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 72 | 4+ | C6.2(C3:S4) | 432,253 |
C6.3(C3⋊S4) = A4⋊Dic9 | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 108 | 6- | C6.3(C3:S4) | 432,254 |
C6.4(C3⋊S4) = C32.3CSU2(𝔽3) | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 432 | | C6.4(C3:S4) | 432,255 |
C6.5(C3⋊S4) = C32.3GL2(𝔽3) | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 216 | | C6.5(C3:S4) | 432,256 |
C6.6(C3⋊S4) = C62.10Dic3 | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 108 | | C6.6(C3:S4) | 432,259 |
C6.7(C3⋊S4) = C2×C9⋊S4 | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 54 | 6+ | C6.7(C3:S4) | 432,536 |
C6.8(C3⋊S4) = C2×C32.3S4 | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 54 | | C6.8(C3:S4) | 432,537 |
C6.9(C3⋊S4) = C32⋊4CSU2(𝔽3) | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 144 | | C6.9(C3:S4) | 432,619 |
C6.10(C3⋊S4) = C32⋊5GL2(𝔽3) | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 72 | | C6.10(C3:S4) | 432,620 |
C6.11(C3⋊S4) = C62⋊10Dic3 | φ: C3⋊S4/C3×A4 → C2 ⊆ Aut C6 | 108 | | C6.11(C3:S4) | 432,621 |
C6.12(C3⋊S4) = C62⋊6Dic3 | central extension (φ=1) | 36 | 3 | C6.12(C3:S4) | 432,260 |
C6.13(C3⋊S4) = C2×C32⋊S4 | central extension (φ=1) | 18 | 3 | C6.13(C3:S4) | 432,538 |
C6.14(C3⋊S4) = C3×C6.5S4 | central extension (φ=1) | 48 | 4 | C6.14(C3:S4) | 432,616 |
C6.15(C3⋊S4) = C3×C6.6S4 | central extension (φ=1) | 48 | 4 | C6.15(C3:S4) | 432,617 |
C6.16(C3⋊S4) = C3×C6.7S4 | central extension (φ=1) | 36 | 6 | C6.16(C3:S4) | 432,618 |
C6.17(C3⋊S4) = C32⋊2CSU2(𝔽3) | central stem extension (φ=1) | 144 | 6 | C6.17(C3:S4) | 432,257 |
C6.18(C3⋊S4) = C32⋊3GL2(𝔽3) | central stem extension (φ=1) | 72 | 6 | C6.18(C3:S4) | 432,258 |