Extensions 1→N→G→Q→1 with N=C6 and Q=C3⋊S4

Direct product G=N×Q with N=C6 and Q=C3⋊S4
dρLabelID
C6×C3⋊S4366C6xC3:S4432,761

Semidirect products G=N:Q with N=C6 and Q=C3⋊S4
extensionφ:Q→Aut NdρLabelID
C6⋊(C3⋊S4) = C2×C324S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C654C6:(C3:S4)432,762

Non-split extensions G=N.Q with N=C6 and Q=C3⋊S4
extensionφ:Q→Aut NdρLabelID
C6.1(C3⋊S4) = C18.5S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C61444-C6.1(C3:S4)432,252
C6.2(C3⋊S4) = C18.6S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C6724+C6.2(C3:S4)432,253
C6.3(C3⋊S4) = A4⋊Dic9φ: C3⋊S4/C3×A4C2 ⊆ Aut C61086-C6.3(C3:S4)432,254
C6.4(C3⋊S4) = C32.3CSU2(𝔽3)φ: C3⋊S4/C3×A4C2 ⊆ Aut C6432C6.4(C3:S4)432,255
C6.5(C3⋊S4) = C32.3GL2(𝔽3)φ: C3⋊S4/C3×A4C2 ⊆ Aut C6216C6.5(C3:S4)432,256
C6.6(C3⋊S4) = C62.10Dic3φ: C3⋊S4/C3×A4C2 ⊆ Aut C6108C6.6(C3:S4)432,259
C6.7(C3⋊S4) = C2×C9⋊S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C6546+C6.7(C3:S4)432,536
C6.8(C3⋊S4) = C2×C32.3S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C654C6.8(C3:S4)432,537
C6.9(C3⋊S4) = C324CSU2(𝔽3)φ: C3⋊S4/C3×A4C2 ⊆ Aut C6144C6.9(C3:S4)432,619
C6.10(C3⋊S4) = C325GL2(𝔽3)φ: C3⋊S4/C3×A4C2 ⊆ Aut C672C6.10(C3:S4)432,620
C6.11(C3⋊S4) = C6210Dic3φ: C3⋊S4/C3×A4C2 ⊆ Aut C6108C6.11(C3:S4)432,621
C6.12(C3⋊S4) = C626Dic3central extension (φ=1)363C6.12(C3:S4)432,260
C6.13(C3⋊S4) = C2×C32⋊S4central extension (φ=1)183C6.13(C3:S4)432,538
C6.14(C3⋊S4) = C3×C6.5S4central extension (φ=1)484C6.14(C3:S4)432,616
C6.15(C3⋊S4) = C3×C6.6S4central extension (φ=1)484C6.15(C3:S4)432,617
C6.16(C3⋊S4) = C3×C6.7S4central extension (φ=1)366C6.16(C3:S4)432,618
C6.17(C3⋊S4) = C322CSU2(𝔽3)central stem extension (φ=1)1446C6.17(C3:S4)432,257
C6.18(C3⋊S4) = C323GL2(𝔽3)central stem extension (φ=1)726C6.18(C3:S4)432,258

׿
×
𝔽