non-abelian, soluble, monomial, rational
Aliases: C3⋊S4, A4⋊S3, (C2×C6)⋊2S3, (C3×A4)⋊2C2, C22⋊(C3⋊S3), SmallGroup(72,43)
Series: Derived ►Chief ►Lower central ►Upper central
C3×A4 — C3⋊S4 |
Generators and relations for C3⋊S4
G = < a,b,c,d,e | a3=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Character table of C3⋊S4
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4 | 6 | |
size | 1 | 3 | 18 | 2 | 8 | 8 | 8 | 18 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 0 | 2 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 0 | -1 | orthogonal lifted from S3 |
ρ7 | 3 | -1 | -1 | 3 | 0 | 0 | 0 | 1 | -1 | orthogonal lifted from S4 |
ρ8 | 3 | -1 | 1 | 3 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S4 |
ρ9 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 1 | orthogonal faithful |
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 4)(2 5)(3 6)(7 12)(8 10)(9 11)
(1 8)(2 9)(3 7)(4 10)(5 11)(6 12)
(1 3 2)(4 7 11)(5 8 12)(6 9 10)
(2 3)(4 10)(5 12)(6 11)(7 9)
G:=sub<Sym(12)| (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,8)(2,9)(3,7)(4,10)(5,11)(6,12), (1,3,2)(4,7,11)(5,8,12)(6,9,10), (2,3)(4,10)(5,12)(6,11)(7,9)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,8)(2,9)(3,7)(4,10)(5,11)(6,12), (1,3,2)(4,7,11)(5,8,12)(6,9,10), (2,3)(4,10)(5,12)(6,11)(7,9) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,4),(2,5),(3,6),(7,12),(8,10),(9,11)], [(1,8),(2,9),(3,7),(4,10),(5,11),(6,12)], [(1,3,2),(4,7,11),(5,8,12),(6,9,10)], [(2,3),(4,10),(5,12),(6,11),(7,9)]])
G:=TransitiveGroup(12,44);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 7)(2 8)(3 9)(10 13)(11 14)(12 15)
(4 16)(5 17)(6 18)(10 13)(11 14)(12 15)
(1 10 16)(2 11 17)(3 12 18)(4 7 13)(5 8 14)(6 9 15)
(2 3)(4 13)(5 15)(6 14)(8 9)(10 16)(11 18)(12 17)
G:=sub<Sym(18)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,7)(2,8)(3,9)(10,13)(11,14)(12,15), (4,16)(5,17)(6,18)(10,13)(11,14)(12,15), (1,10,16)(2,11,17)(3,12,18)(4,7,13)(5,8,14)(6,9,15), (2,3)(4,13)(5,15)(6,14)(8,9)(10,16)(11,18)(12,17)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,7)(2,8)(3,9)(10,13)(11,14)(12,15), (4,16)(5,17)(6,18)(10,13)(11,14)(12,15), (1,10,16)(2,11,17)(3,12,18)(4,7,13)(5,8,14)(6,9,15), (2,3)(4,13)(5,15)(6,14)(8,9)(10,16)(11,18)(12,17) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,7),(2,8),(3,9),(10,13),(11,14),(12,15)], [(4,16),(5,17),(6,18),(10,13),(11,14),(12,15)], [(1,10,16),(2,11,17),(3,12,18),(4,7,13),(5,8,14),(6,9,15)], [(2,3),(4,13),(5,15),(6,14),(8,9),(10,16),(11,18),(12,17)]])
G:=TransitiveGroup(18,37);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 7)(2 8)(3 9)(10 13)(11 14)(12 15)
(4 16)(5 17)(6 18)(10 13)(11 14)(12 15)
(1 10 16)(2 11 17)(3 12 18)(4 7 13)(5 8 14)(6 9 15)
(1 7)(2 9)(3 8)(4 10)(5 12)(6 11)(13 16)(14 18)(15 17)
G:=sub<Sym(18)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,7)(2,8)(3,9)(10,13)(11,14)(12,15), (4,16)(5,17)(6,18)(10,13)(11,14)(12,15), (1,10,16)(2,11,17)(3,12,18)(4,7,13)(5,8,14)(6,9,15), (1,7)(2,9)(3,8)(4,10)(5,12)(6,11)(13,16)(14,18)(15,17)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,7)(2,8)(3,9)(10,13)(11,14)(12,15), (4,16)(5,17)(6,18)(10,13)(11,14)(12,15), (1,10,16)(2,11,17)(3,12,18)(4,7,13)(5,8,14)(6,9,15), (1,7)(2,9)(3,8)(4,10)(5,12)(6,11)(13,16)(14,18)(15,17) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,7),(2,8),(3,9),(10,13),(11,14),(12,15)], [(4,16),(5,17),(6,18),(10,13),(11,14),(12,15)], [(1,10,16),(2,11,17),(3,12,18),(4,7,13),(5,8,14),(6,9,15)], [(1,7),(2,9),(3,8),(4,10),(5,12),(6,11),(13,16),(14,18),(15,17)]])
G:=TransitiveGroup(18,40);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 11)(2 12)(3 10)(4 24)(5 22)(6 23)(7 16)(8 17)(9 18)(13 20)(14 21)(15 19)
(1 19)(2 20)(3 21)(4 8)(5 9)(6 7)(10 14)(11 15)(12 13)(16 23)(17 24)(18 22)
(1 3 2)(4 6 5)(7 18 24)(8 16 22)(9 17 23)(10 20 15)(11 21 13)(12 19 14)
(1 6)(2 5)(3 4)(7 19)(8 21)(9 20)(10 17)(11 16)(12 18)(13 22)(14 24)(15 23)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,11)(2,12)(3,10)(4,24)(5,22)(6,23)(7,16)(8,17)(9,18)(13,20)(14,21)(15,19), (1,19)(2,20)(3,21)(4,8)(5,9)(6,7)(10,14)(11,15)(12,13)(16,23)(17,24)(18,22), (1,3,2)(4,6,5)(7,18,24)(8,16,22)(9,17,23)(10,20,15)(11,21,13)(12,19,14), (1,6)(2,5)(3,4)(7,19)(8,21)(9,20)(10,17)(11,16)(12,18)(13,22)(14,24)(15,23)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,11)(2,12)(3,10)(4,24)(5,22)(6,23)(7,16)(8,17)(9,18)(13,20)(14,21)(15,19), (1,19)(2,20)(3,21)(4,8)(5,9)(6,7)(10,14)(11,15)(12,13)(16,23)(17,24)(18,22), (1,3,2)(4,6,5)(7,18,24)(8,16,22)(9,17,23)(10,20,15)(11,21,13)(12,19,14), (1,6)(2,5)(3,4)(7,19)(8,21)(9,20)(10,17)(11,16)(12,18)(13,22)(14,24)(15,23) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,11),(2,12),(3,10),(4,24),(5,22),(6,23),(7,16),(8,17),(9,18),(13,20),(14,21),(15,19)], [(1,19),(2,20),(3,21),(4,8),(5,9),(6,7),(10,14),(11,15),(12,13),(16,23),(17,24),(18,22)], [(1,3,2),(4,6,5),(7,18,24),(8,16,22),(9,17,23),(10,20,15),(11,21,13),(12,19,14)], [(1,6),(2,5),(3,4),(7,19),(8,21),(9,20),(10,17),(11,16),(12,18),(13,22),(14,24),(15,23)]])
G:=TransitiveGroup(24,79);
C3⋊S4 is a maximal subgroup of
S3×S4 C62⋊S3 C9⋊S4 C32⋊4S4 (C4×C12)⋊S3 PSO4+ (𝔽3) (C2×C6)⋊S4 ΓL2(𝔽4) A4⋊D15
C3⋊S4 is a maximal quotient of
C6.5S4 C6.6S4 C6.7S4 C9⋊S4 C32.3S4 C32⋊S4 C32⋊4S4 (C4×C12)⋊S3 PSO4+ (𝔽3) (C2×C6)⋊S4 A4⋊D15
action | f(x) | Disc(f) |
---|---|---|
12T44 | x12-6x6-10x3-6 | -214·323·56 |
Matrix representation of C3⋊S4 ►in GL5(ℤ)
-1 | 1 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | -1 | -1 | -1 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 |
-1 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,Integers())| [-1,-1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,1,-1,0],[1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,-1,0,1,0,0,-1,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,-1,0,0,0,0,-1,1,0,0,0,-1,0],[-1,-1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
C3⋊S4 in GAP, Magma, Sage, TeX
C_3\rtimes S_4
% in TeX
G:=Group("C3:S4");
// GroupNames label
G:=SmallGroup(72,43);
// by ID
G=gap.SmallGroup(72,43);
# by ID
G:=PCGroup([5,-2,-3,-3,-2,2,41,182,723,368,454,684]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊S4 in TeX
Character table of C3⋊S4 in TeX