Extensions 1→N→G→Q→1 with N=C22 and Q=D54

Direct product G=N×Q with N=C22 and Q=D54

Semidirect products G=N:Q with N=C22 and Q=D54
extensionφ:Q→Aut NdρLabelID
C22⋊D54 = C2×C9.S4φ: D54/C18S3 ⊆ Aut C22546+C2^2:D54432,224
C222D54 = D4×D27φ: D54/D27C2 ⊆ Aut C221084+C2^2:2D54432,47
C223D54 = C2×C27⋊D4φ: D54/C54C2 ⊆ Aut C22216C2^2:3D54432,52

Non-split extensions G=N.Q with N=C22 and Q=D54
extensionφ:Q→Aut NdρLabelID
C22.1D54 = D42D27φ: D54/D27C2 ⊆ Aut C222164-C2^2.1D54432,48
C22.2D54 = D1085C2φ: D54/C54C2 ⊆ Aut C222162C2^2.2D54432,46
C22.3D54 = C4×Dic27central extension (φ=1)432C2^2.3D54432,11
C22.4D54 = Dic27⋊C4central extension (φ=1)432C2^2.4D54432,12
C22.5D54 = C4⋊Dic27central extension (φ=1)432C2^2.5D54432,13
C22.6D54 = D54⋊C4central extension (φ=1)216C2^2.6D54432,14
C22.7D54 = C54.D4central extension (φ=1)216C2^2.7D54432,19
C22.8D54 = C2×Dic54central extension (φ=1)432C2^2.8D54432,43
C22.9D54 = C2×C4×D27central extension (φ=1)216C2^2.9D54432,44
C22.10D54 = C2×D108central extension (φ=1)216C2^2.10D54432,45
C22.11D54 = C22×Dic27central extension (φ=1)432C2^2.11D54432,51