Extensions 1→N→G→Q→1 with N=C3 and Q=C3xC4oD12

Direct product G=NxQ with N=C3 and Q=C3xC4oD12
dρLabelID
C32xC4oD1272C3^2xC4oD12432,703

Semidirect products G=N:Q with N=C3 and Q=C3xC4oD12
extensionφ:Q→Aut NdρLabelID
C3:1(C3xC4oD12) = C3xD6.6D6φ: C3xC4oD12/C3xDic6C2 ⊆ Aut C3484C3:1(C3xC4oD12)432,647
C3:2(C3xC4oD12) = C3xD6.D6φ: C3xC4oD12/S3xC12C2 ⊆ Aut C3484C3:2(C3xC4oD12)432,646
C3:3(C3xC4oD12) = C3xD12:5S3φ: C3xC4oD12/C3xD12C2 ⊆ Aut C3484C3:3(C3xC4oD12)432,643
C3:4(C3xC4oD12) = C3xD6.3D6φ: C3xC4oD12/C3xC3:D4C2 ⊆ Aut C3244C3:4(C3xC4oD12)432,652
C3:5(C3xC4oD12) = C3xC12.59D6φ: C3xC4oD12/C6xC12C2 ⊆ Aut C372C3:5(C3xC4oD12)432,713

Non-split extensions G=N.Q with N=C3 and Q=C3xC4oD12
extensionφ:Q→Aut NdρLabelID
C3.1(C3xC4oD12) = C3xD36:5C2φ: C3xC4oD12/C6xC12C2 ⊆ Aut C3722C3.1(C3xC4oD12)432,344
C3.2(C3xC4oD12) = C62.36D6φ: C3xC4oD12/C6xC12C2 ⊆ Aut C3726C3.2(C3xC4oD12)432,351
C3.3(C3xC4oD12) = D36:6C6φ: C3xC4oD12/C6xC12C2 ⊆ Aut C3726C3.3(C3xC4oD12)432,355
C3.4(C3xC4oD12) = C9xC4oD12central extension (φ=1)722C3.4(C3xC4oD12)432,347

׿
x
:
Z
F
o
wr
Q
<