direct product, abelian, monomial
Aliases: C6×C12, SmallGroup(72,36)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C6×C12 |
C1 — C6×C12 |
C1 — C6×C12 |
Generators and relations for C6×C12
G = < a,b | a6=b12=1, ab=ba >
(1 65 32 42 17 51)(2 66 33 43 18 52)(3 67 34 44 19 53)(4 68 35 45 20 54)(5 69 36 46 21 55)(6 70 25 47 22 56)(7 71 26 48 23 57)(8 72 27 37 24 58)(9 61 28 38 13 59)(10 62 29 39 14 60)(11 63 30 40 15 49)(12 64 31 41 16 50)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,65,32,42,17,51)(2,66,33,43,18,52)(3,67,34,44,19,53)(4,68,35,45,20,54)(5,69,36,46,21,55)(6,70,25,47,22,56)(7,71,26,48,23,57)(8,72,27,37,24,58)(9,61,28,38,13,59)(10,62,29,39,14,60)(11,63,30,40,15,49)(12,64,31,41,16,50), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,65,32,42,17,51)(2,66,33,43,18,52)(3,67,34,44,19,53)(4,68,35,45,20,54)(5,69,36,46,21,55)(6,70,25,47,22,56)(7,71,26,48,23,57)(8,72,27,37,24,58)(9,61,28,38,13,59)(10,62,29,39,14,60)(11,63,30,40,15,49)(12,64,31,41,16,50), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,65,32,42,17,51),(2,66,33,43,18,52),(3,67,34,44,19,53),(4,68,35,45,20,54),(5,69,36,46,21,55),(6,70,25,47,22,56),(7,71,26,48,23,57),(8,72,27,37,24,58),(9,61,28,38,13,59),(10,62,29,39,14,60),(11,63,30,40,15,49),(12,64,31,41,16,50)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)]])
C6×C12 is a maximal subgroup of
C12.58D6 C6.Dic6 C12⋊Dic3 C6.11D12 C12.59D6
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3H | 4A | 4B | 4C | 4D | 6A | ··· | 6X | 12A | ··· | 12AF |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 |
kernel | C6×C12 | C3×C12 | C62 | C2×C12 | C3×C6 | C12 | C2×C6 | C6 |
# reps | 1 | 2 | 1 | 8 | 4 | 16 | 8 | 32 |
Matrix representation of C6×C12 ►in GL2(𝔽13) generated by
1 | 0 |
0 | 10 |
6 | 0 |
0 | 12 |
G:=sub<GL(2,GF(13))| [1,0,0,10],[6,0,0,12] >;
C6×C12 in GAP, Magma, Sage, TeX
C_6\times C_{12}
% in TeX
G:=Group("C6xC12");
// GroupNames label
G:=SmallGroup(72,36);
// by ID
G=gap.SmallGroup(72,36);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-2,180]);
// Polycyclic
G:=Group<a,b|a^6=b^12=1,a*b=b*a>;
// generators/relations
Export