Extensions 1→N→G→Q→1 with N=C3 and Q=D6⋊Dic3

Direct product G=N×Q with N=C3 and Q=D6⋊Dic3
dρLabelID
C3×D6⋊Dic348C3xD6:Dic3432,426

Semidirect products G=N:Q with N=C3 and Q=D6⋊Dic3
extensionφ:Q→Aut NdρLabelID
C31(D6⋊Dic3) = C62.78D6φ: D6⋊Dic3/C6×Dic3C2 ⊆ Aut C3144C3:1(D6:Dic3)432,450
C32(D6⋊Dic3) = C62.84D6φ: D6⋊Dic3/C2×C3⋊Dic3C2 ⊆ Aut C348C3:2(D6:Dic3)432,461
C33(D6⋊Dic3) = C62.77D6φ: D6⋊Dic3/S3×C2×C6C2 ⊆ Aut C3144C3:3(D6:Dic3)432,449

Non-split extensions G=N.Q with N=C3 and Q=D6⋊Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(D6⋊Dic3) = D18⋊Dic3φ: D6⋊Dic3/C6×Dic3C2 ⊆ Aut C3144C3.1(D6:Dic3)432,91
C3.2(D6⋊Dic3) = C62.4D6φ: D6⋊Dic3/C2×C3⋊Dic3C2 ⊆ Aut C372C3.2(D6:Dic3)432,97
C3.3(D6⋊Dic3) = D6⋊Dic9φ: D6⋊Dic3/S3×C2×C6C2 ⊆ Aut C3144C3.3(D6:Dic3)432,93

׿
×
𝔽