direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C3⋊Dic3, C6⋊Dic3, C6.15D6, C62.2C2, (C3×C6)⋊3C4, (C2×C6).5S3, C32⋊7(C2×C4), C22.(C3⋊S3), C3⋊2(C2×Dic3), (C3×C6).14C22, C2.2(C2×C3⋊S3), SmallGroup(72,34)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C3⋊Dic3 — C2×C3⋊Dic3 |
C32 — C2×C3⋊Dic3 |
Generators and relations for C2×C3⋊Dic3
G = < a,b,c,d | a2=b3=c6=1, d2=c3, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Character table of C2×C3⋊Dic3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | -2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -2 | 1 | 1 | 1 | -1 | -1 | 2 | -2 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -1 | 1 | 1 | -2 | 1 | 2 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | -1 | 1 | 1 | 1 | -2 | -1 | 2 | -1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ16 | 2 | -2 | -2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 2 | 1 | -2 | 1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | -2 | 2 | -2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -2 | 1 | -2 | 1 | 1 | 1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | -2 | -1 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | -1 | -1 | -1 | 2 | 1 | -2 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -1 | -1 | 2 | -1 | -2 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -2 | 1 | 1 | 1 | 1 | 1 | -2 | 2 | symplectic lifted from Dic3, Schur index 2 |
ρ23 | 2 | 2 | -2 | -2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | -1 | -1 | -1 | 1 | 1 | -2 | -2 | symplectic lifted from Dic3, Schur index 2 |
ρ24 | 2 | -2 | 2 | -2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
(1 47)(2 48)(3 43)(4 44)(5 45)(6 46)(7 63)(8 64)(9 65)(10 66)(11 61)(12 62)(13 57)(14 58)(15 59)(16 60)(17 55)(18 56)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 35)(26 36)(27 31)(28 32)(29 33)(30 34)(49 70)(50 71)(51 72)(52 67)(53 68)(54 69)
(1 23 26)(2 24 27)(3 19 28)(4 20 29)(5 21 30)(6 22 25)(7 13 71)(8 14 72)(9 15 67)(10 16 68)(11 17 69)(12 18 70)(31 48 42)(32 43 37)(33 44 38)(34 45 39)(35 46 40)(36 47 41)(49 62 56)(50 63 57)(51 64 58)(52 65 59)(53 66 60)(54 61 55)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 54 4 51)(2 53 5 50)(3 52 6 49)(7 31 10 34)(8 36 11 33)(9 35 12 32)(13 42 16 39)(14 41 17 38)(15 40 18 37)(19 59 22 56)(20 58 23 55)(21 57 24 60)(25 62 28 65)(26 61 29 64)(27 66 30 63)(43 67 46 70)(44 72 47 69)(45 71 48 68)
G:=sub<Sym(72)| (1,47)(2,48)(3,43)(4,44)(5,45)(6,46)(7,63)(8,64)(9,65)(10,66)(11,61)(12,62)(13,57)(14,58)(15,59)(16,60)(17,55)(18,56)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,35)(26,36)(27,31)(28,32)(29,33)(30,34)(49,70)(50,71)(51,72)(52,67)(53,68)(54,69), (1,23,26)(2,24,27)(3,19,28)(4,20,29)(5,21,30)(6,22,25)(7,13,71)(8,14,72)(9,15,67)(10,16,68)(11,17,69)(12,18,70)(31,48,42)(32,43,37)(33,44,38)(34,45,39)(35,46,40)(36,47,41)(49,62,56)(50,63,57)(51,64,58)(52,65,59)(53,66,60)(54,61,55), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,54,4,51)(2,53,5,50)(3,52,6,49)(7,31,10,34)(8,36,11,33)(9,35,12,32)(13,42,16,39)(14,41,17,38)(15,40,18,37)(19,59,22,56)(20,58,23,55)(21,57,24,60)(25,62,28,65)(26,61,29,64)(27,66,30,63)(43,67,46,70)(44,72,47,69)(45,71,48,68)>;
G:=Group( (1,47)(2,48)(3,43)(4,44)(5,45)(6,46)(7,63)(8,64)(9,65)(10,66)(11,61)(12,62)(13,57)(14,58)(15,59)(16,60)(17,55)(18,56)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,35)(26,36)(27,31)(28,32)(29,33)(30,34)(49,70)(50,71)(51,72)(52,67)(53,68)(54,69), (1,23,26)(2,24,27)(3,19,28)(4,20,29)(5,21,30)(6,22,25)(7,13,71)(8,14,72)(9,15,67)(10,16,68)(11,17,69)(12,18,70)(31,48,42)(32,43,37)(33,44,38)(34,45,39)(35,46,40)(36,47,41)(49,62,56)(50,63,57)(51,64,58)(52,65,59)(53,66,60)(54,61,55), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,54,4,51)(2,53,5,50)(3,52,6,49)(7,31,10,34)(8,36,11,33)(9,35,12,32)(13,42,16,39)(14,41,17,38)(15,40,18,37)(19,59,22,56)(20,58,23,55)(21,57,24,60)(25,62,28,65)(26,61,29,64)(27,66,30,63)(43,67,46,70)(44,72,47,69)(45,71,48,68) );
G=PermutationGroup([[(1,47),(2,48),(3,43),(4,44),(5,45),(6,46),(7,63),(8,64),(9,65),(10,66),(11,61),(12,62),(13,57),(14,58),(15,59),(16,60),(17,55),(18,56),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,35),(26,36),(27,31),(28,32),(29,33),(30,34),(49,70),(50,71),(51,72),(52,67),(53,68),(54,69)], [(1,23,26),(2,24,27),(3,19,28),(4,20,29),(5,21,30),(6,22,25),(7,13,71),(8,14,72),(9,15,67),(10,16,68),(11,17,69),(12,18,70),(31,48,42),(32,43,37),(33,44,38),(34,45,39),(35,46,40),(36,47,41),(49,62,56),(50,63,57),(51,64,58),(52,65,59),(53,66,60),(54,61,55)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,54,4,51),(2,53,5,50),(3,52,6,49),(7,31,10,34),(8,36,11,33),(9,35,12,32),(13,42,16,39),(14,41,17,38),(15,40,18,37),(19,59,22,56),(20,58,23,55),(21,57,24,60),(25,62,28,65),(26,61,29,64),(27,66,30,63),(43,67,46,70),(44,72,47,69),(45,71,48,68)]])
C2×C3⋊Dic3 is a maximal subgroup of
Dic32 D6⋊Dic3 Dic3⋊Dic3 C62.C22 C6.Dic6 C12⋊Dic3 C6.11D12 C62⋊5C4 C62.C4 C2×S3×Dic3 D6.4D6 C2×C4×C3⋊S3 C12.D6 C6.GL2(𝔽3)
C2×C3⋊Dic3 is a maximal quotient of
C12.58D6 C12⋊Dic3 C62⋊5C4
Matrix representation of C2×C3⋊Dic3 ►in GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 12 | 12 |
12 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 10 |
0 | 0 | 0 | 7 | 10 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,9,0,0,0,0,0,3,0,0,0,0,0,0,12,0,0,0,1,12],[12,0,0,0,0,0,9,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,1],[5,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,3,7,0,0,0,10,10] >;
C2×C3⋊Dic3 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes {\rm Dic}_3
% in TeX
G:=Group("C2xC3:Dic3");
// GroupNames label
G:=SmallGroup(72,34);
// by ID
G=gap.SmallGroup(72,34);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,20,323,1204]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^6=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C2×C3⋊Dic3 in TeX
Character table of C2×C3⋊Dic3 in TeX