Copied to
clipboard

G = D18⋊Dic3order 432 = 24·33

The semidirect product of D18 and Dic3 acting via Dic3/C6=C2

metabelian, supersoluble, monomial

Aliases: D18⋊Dic3, C6.17D36, C62.57D6, (C6×D9)⋊1C4, C6.20(C4×D9), C33(D18⋊C4), (C22×D9).S3, (C2×Dic3)⋊1D9, (C2×C6).12D18, (C2×C18).12D6, (C3×C6).34D12, (C3×C18).16D4, C2.5(Dic3×D9), C6.4(S3×Dic3), C22.8(S3×D9), (Dic3×C18)⋊1C2, C6.13(C9⋊D4), (C6×C18).6C22, (C6×Dic3).3S3, C18.5(C2×Dic3), C2.2(D6⋊D9), C6.6(C3⋊D12), C2.2(C3⋊D36), C91(C6.D4), C18.12(C3⋊D4), C3.1(D6⋊Dic3), C32.2(D6⋊C4), C6.17(D6⋊S3), (C2×C6).18S32, (C2×C6×D9).1C2, (C3×C9)⋊1(C22⋊C4), (C3×C6).40(C4×S3), (C2×C9⋊Dic3)⋊1C2, (C3×C18).11(C2×C4), (C3×C6).51(C3⋊D4), SmallGroup(432,91)

Series: Derived Chief Lower central Upper central

C1C3×C18 — D18⋊Dic3
C1C3C9C3×C9C3×C18C6×C18C2×C6×D9 — D18⋊Dic3
C3×C9C3×C18 — D18⋊Dic3
C1C22

Generators and relations for D18⋊Dic3
 G = < a,b,c,d | a18=b2=c6=1, d2=c3, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a9b, dcd-1=c-1 >

Subgroups: 652 in 118 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C23, C9, C9, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, D9, C18, C18, C3×S3, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C22×S3, C22×C6, C3×C9, Dic9, C36, D18, D18, C2×C18, C2×C18, C3×Dic3, C3⋊Dic3, S3×C6, C62, D6⋊C4, C6.D4, C3×D9, C3×C18, C2×Dic9, C2×C36, C22×D9, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C9×Dic3, C9⋊Dic3, C6×D9, C6×D9, C6×C18, D18⋊C4, D6⋊Dic3, Dic3×C18, C2×C9⋊Dic3, C2×C6×D9, D18⋊Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, D9, C4×S3, D12, C2×Dic3, C3⋊D4, D18, S32, D6⋊C4, C6.D4, C4×D9, D36, C9⋊D4, S3×Dic3, D6⋊S3, C3⋊D12, S3×D9, D18⋊C4, D6⋊Dic3, Dic3×D9, C3⋊D36, D6⋊D9, D18⋊Dic3

Smallest permutation representation of D18⋊Dic3
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 108)(2 107)(3 106)(4 105)(5 104)(6 103)(7 102)(8 101)(9 100)(10 99)(11 98)(12 97)(13 96)(14 95)(15 94)(16 93)(17 92)(18 91)(19 78)(20 77)(21 76)(22 75)(23 74)(24 73)(25 90)(26 89)(27 88)(28 87)(29 86)(30 85)(31 84)(32 83)(33 82)(34 81)(35 80)(36 79)(37 128)(38 127)(39 144)(40 143)(41 142)(42 141)(43 140)(44 139)(45 138)(46 137)(47 136)(48 135)(49 134)(50 133)(51 132)(52 131)(53 130)(54 129)(55 126)(56 125)(57 124)(58 123)(59 122)(60 121)(61 120)(62 119)(63 118)(64 117)(65 116)(66 115)(67 114)(68 113)(69 112)(70 111)(71 110)(72 109)
(1 20 7 26 13 32)(2 21 8 27 14 33)(3 22 9 28 15 34)(4 23 10 29 16 35)(5 24 11 30 17 36)(6 25 12 31 18 19)(37 57 49 69 43 63)(38 58 50 70 44 64)(39 59 51 71 45 65)(40 60 52 72 46 66)(41 61 53 55 47 67)(42 62 54 56 48 68)(73 98 85 92 79 104)(74 99 86 93 80 105)(75 100 87 94 81 106)(76 101 88 95 82 107)(77 102 89 96 83 108)(78 103 90 97 84 91)(109 137 115 143 121 131)(110 138 116 144 122 132)(111 139 117 127 123 133)(112 140 118 128 124 134)(113 141 119 129 125 135)(114 142 120 130 126 136)
(1 65 26 51)(2 66 27 52)(3 67 28 53)(4 68 29 54)(5 69 30 37)(6 70 31 38)(7 71 32 39)(8 72 33 40)(9 55 34 41)(10 56 35 42)(11 57 36 43)(12 58 19 44)(13 59 20 45)(14 60 21 46)(15 61 22 47)(16 62 23 48)(17 63 24 49)(18 64 25 50)(73 143 92 109)(74 144 93 110)(75 127 94 111)(76 128 95 112)(77 129 96 113)(78 130 97 114)(79 131 98 115)(80 132 99 116)(81 133 100 117)(82 134 101 118)(83 135 102 119)(84 136 103 120)(85 137 104 121)(86 138 105 122)(87 139 106 123)(88 140 107 124)(89 141 108 125)(90 142 91 126)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,108)(2,107)(3,106)(4,105)(5,104)(6,103)(7,102)(8,101)(9,100)(10,99)(11,98)(12,97)(13,96)(14,95)(15,94)(16,93)(17,92)(18,91)(19,78)(20,77)(21,76)(22,75)(23,74)(24,73)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,128)(38,127)(39,144)(40,143)(41,142)(42,141)(43,140)(44,139)(45,138)(46,137)(47,136)(48,135)(49,134)(50,133)(51,132)(52,131)(53,130)(54,129)(55,126)(56,125)(57,124)(58,123)(59,122)(60,121)(61,120)(62,119)(63,118)(64,117)(65,116)(66,115)(67,114)(68,113)(69,112)(70,111)(71,110)(72,109), (1,20,7,26,13,32)(2,21,8,27,14,33)(3,22,9,28,15,34)(4,23,10,29,16,35)(5,24,11,30,17,36)(6,25,12,31,18,19)(37,57,49,69,43,63)(38,58,50,70,44,64)(39,59,51,71,45,65)(40,60,52,72,46,66)(41,61,53,55,47,67)(42,62,54,56,48,68)(73,98,85,92,79,104)(74,99,86,93,80,105)(75,100,87,94,81,106)(76,101,88,95,82,107)(77,102,89,96,83,108)(78,103,90,97,84,91)(109,137,115,143,121,131)(110,138,116,144,122,132)(111,139,117,127,123,133)(112,140,118,128,124,134)(113,141,119,129,125,135)(114,142,120,130,126,136), (1,65,26,51)(2,66,27,52)(3,67,28,53)(4,68,29,54)(5,69,30,37)(6,70,31,38)(7,71,32,39)(8,72,33,40)(9,55,34,41)(10,56,35,42)(11,57,36,43)(12,58,19,44)(13,59,20,45)(14,60,21,46)(15,61,22,47)(16,62,23,48)(17,63,24,49)(18,64,25,50)(73,143,92,109)(74,144,93,110)(75,127,94,111)(76,128,95,112)(77,129,96,113)(78,130,97,114)(79,131,98,115)(80,132,99,116)(81,133,100,117)(82,134,101,118)(83,135,102,119)(84,136,103,120)(85,137,104,121)(86,138,105,122)(87,139,106,123)(88,140,107,124)(89,141,108,125)(90,142,91,126)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,108)(2,107)(3,106)(4,105)(5,104)(6,103)(7,102)(8,101)(9,100)(10,99)(11,98)(12,97)(13,96)(14,95)(15,94)(16,93)(17,92)(18,91)(19,78)(20,77)(21,76)(22,75)(23,74)(24,73)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,128)(38,127)(39,144)(40,143)(41,142)(42,141)(43,140)(44,139)(45,138)(46,137)(47,136)(48,135)(49,134)(50,133)(51,132)(52,131)(53,130)(54,129)(55,126)(56,125)(57,124)(58,123)(59,122)(60,121)(61,120)(62,119)(63,118)(64,117)(65,116)(66,115)(67,114)(68,113)(69,112)(70,111)(71,110)(72,109), (1,20,7,26,13,32)(2,21,8,27,14,33)(3,22,9,28,15,34)(4,23,10,29,16,35)(5,24,11,30,17,36)(6,25,12,31,18,19)(37,57,49,69,43,63)(38,58,50,70,44,64)(39,59,51,71,45,65)(40,60,52,72,46,66)(41,61,53,55,47,67)(42,62,54,56,48,68)(73,98,85,92,79,104)(74,99,86,93,80,105)(75,100,87,94,81,106)(76,101,88,95,82,107)(77,102,89,96,83,108)(78,103,90,97,84,91)(109,137,115,143,121,131)(110,138,116,144,122,132)(111,139,117,127,123,133)(112,140,118,128,124,134)(113,141,119,129,125,135)(114,142,120,130,126,136), (1,65,26,51)(2,66,27,52)(3,67,28,53)(4,68,29,54)(5,69,30,37)(6,70,31,38)(7,71,32,39)(8,72,33,40)(9,55,34,41)(10,56,35,42)(11,57,36,43)(12,58,19,44)(13,59,20,45)(14,60,21,46)(15,61,22,47)(16,62,23,48)(17,63,24,49)(18,64,25,50)(73,143,92,109)(74,144,93,110)(75,127,94,111)(76,128,95,112)(77,129,96,113)(78,130,97,114)(79,131,98,115)(80,132,99,116)(81,133,100,117)(82,134,101,118)(83,135,102,119)(84,136,103,120)(85,137,104,121)(86,138,105,122)(87,139,106,123)(88,140,107,124)(89,141,108,125)(90,142,91,126) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,108),(2,107),(3,106),(4,105),(5,104),(6,103),(7,102),(8,101),(9,100),(10,99),(11,98),(12,97),(13,96),(14,95),(15,94),(16,93),(17,92),(18,91),(19,78),(20,77),(21,76),(22,75),(23,74),(24,73),(25,90),(26,89),(27,88),(28,87),(29,86),(30,85),(31,84),(32,83),(33,82),(34,81),(35,80),(36,79),(37,128),(38,127),(39,144),(40,143),(41,142),(42,141),(43,140),(44,139),(45,138),(46,137),(47,136),(48,135),(49,134),(50,133),(51,132),(52,131),(53,130),(54,129),(55,126),(56,125),(57,124),(58,123),(59,122),(60,121),(61,120),(62,119),(63,118),(64,117),(65,116),(66,115),(67,114),(68,113),(69,112),(70,111),(71,110),(72,109)], [(1,20,7,26,13,32),(2,21,8,27,14,33),(3,22,9,28,15,34),(4,23,10,29,16,35),(5,24,11,30,17,36),(6,25,12,31,18,19),(37,57,49,69,43,63),(38,58,50,70,44,64),(39,59,51,71,45,65),(40,60,52,72,46,66),(41,61,53,55,47,67),(42,62,54,56,48,68),(73,98,85,92,79,104),(74,99,86,93,80,105),(75,100,87,94,81,106),(76,101,88,95,82,107),(77,102,89,96,83,108),(78,103,90,97,84,91),(109,137,115,143,121,131),(110,138,116,144,122,132),(111,139,117,127,123,133),(112,140,118,128,124,134),(113,141,119,129,125,135),(114,142,120,130,126,136)], [(1,65,26,51),(2,66,27,52),(3,67,28,53),(4,68,29,54),(5,69,30,37),(6,70,31,38),(7,71,32,39),(8,72,33,40),(9,55,34,41),(10,56,35,42),(11,57,36,43),(12,58,19,44),(13,59,20,45),(14,60,21,46),(15,61,22,47),(16,62,23,48),(17,63,24,49),(18,64,25,50),(73,143,92,109),(74,144,93,110),(75,127,94,111),(76,128,95,112),(77,129,96,113),(78,130,97,114),(79,131,98,115),(80,132,99,116),(81,133,100,117),(82,134,101,118),(83,135,102,119),(84,136,103,120),(85,137,104,121),(86,138,105,122),(87,139,106,123),(88,140,107,124),(89,141,108,125),(90,142,91,126)]])

66 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D6A···6F6G6H6I6J6K6L6M9A9B9C9D9E9F12A12B12C12D18A···18I18J···18R36A···36L
order12222233344446···666666669999991212121218···1818···1836···36
size111118182246654542···24441818181822244466662···24···46···6

66 irreducible representations

dim1111122222222222222244444444
type+++++++-+++++++--++-+-
imageC1C2C2C2C4S3S3D4Dic3D6D6D9C3⋊D4C4×S3D12C3⋊D4D18C4×D9D36C9⋊D4S32S3×Dic3D6⋊S3C3⋊D12S3×D9Dic3×D9C3⋊D36D6⋊D9
kernelD18⋊Dic3Dic3×C18C2×C9⋊Dic3C2×C6×D9C6×D9C22×D9C6×Dic3C3×C18D18C2×C18C62C2×Dic3C18C3×C6C3×C6C3×C6C2×C6C6C6C6C2×C6C6C6C6C22C2C2C2
# reps1111411221134222366611113333

Matrix representation of D18⋊Dic3 in GL6(𝔽37)

3600000
0360000
001000
000100
0000120
0000034
,
28250000
1990000
001000
000100
000003
0000250
,
100000
010000
000100
0036100
0000360
0000036
,
3610000
010000
0003100
0031000
000060
000006

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,34],[28,19,0,0,0,0,25,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,25,0,0,0,0,3,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,1,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[36,0,0,0,0,0,1,1,0,0,0,0,0,0,0,31,0,0,0,0,31,0,0,0,0,0,0,0,6,0,0,0,0,0,0,6] >;

D18⋊Dic3 in GAP, Magma, Sage, TeX

D_{18}\rtimes {\rm Dic}_3
% in TeX

G:=Group("D18:Dic3");
// GroupNames label

G:=SmallGroup(432,91);
// by ID

G=gap.SmallGroup(432,91);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,36,571,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^18=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^9*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽