# Extensions 1→N→G→Q→1 with N=C2 and Q=S32×C6

Direct product G=N×Q with N=C2 and Q=S32×C6
dρLabelID
S32×C2×C648S3^2xC2xC6432,767

Non-split extensions G=N.Q with N=C2 and Q=S32×C6
extensionφ:Q→Aut NdρLabelID
C2.1(S32×C6) = S32×C12central extension (φ=1)484C2.1(S3^2xC6)432,648
C2.2(S32×C6) = S3×C6×Dic3central extension (φ=1)48C2.2(S3^2xC6)432,651
C2.3(S32×C6) = C6×C6.D6central extension (φ=1)48C2.3(S3^2xC6)432,654
C2.4(S32×C6) = C3×S3×Dic6central stem extension (φ=1)484C2.4(S3^2xC6)432,642
C2.5(S32×C6) = C3×D125S3central stem extension (φ=1)484C2.5(S3^2xC6)432,643
C2.6(S32×C6) = C3×D12⋊S3central stem extension (φ=1)484C2.6(S3^2xC6)432,644
C2.7(S32×C6) = C3×Dic3.D6central stem extension (φ=1)484C2.7(S3^2xC6)432,645
C2.8(S32×C6) = C3×D6.D6central stem extension (φ=1)484C2.8(S3^2xC6)432,646
C2.9(S32×C6) = C3×D6.6D6central stem extension (φ=1)484C2.9(S3^2xC6)432,647
C2.10(S32×C6) = C3×S3×D12central stem extension (φ=1)484C2.10(S3^2xC6)432,649
C2.11(S32×C6) = C3×D6⋊D6central stem extension (φ=1)484C2.11(S3^2xC6)432,650
C2.12(S32×C6) = C3×D6.3D6central stem extension (φ=1)244C2.12(S3^2xC6)432,652
C2.13(S32×C6) = C3×D6.4D6central stem extension (φ=1)244C2.13(S3^2xC6)432,653
C2.14(S32×C6) = C6×D6⋊S3central stem extension (φ=1)48C2.14(S3^2xC6)432,655
C2.15(S32×C6) = C6×C3⋊D12central stem extension (φ=1)48C2.15(S3^2xC6)432,656
C2.16(S32×C6) = C6×C322Q8central stem extension (φ=1)48C2.16(S3^2xC6)432,657
C2.17(S32×C6) = C3×S3×C3⋊D4central stem extension (φ=1)244C2.17(S3^2xC6)432,658
C2.18(S32×C6) = C3×Dic3⋊D6central stem extension (φ=1)244C2.18(S3^2xC6)432,659

׿
×
𝔽