Extensions 1→N→G→Q→1 with N=C3xDic3 and Q=C12

Direct product G=NxQ with N=C3xDic3 and Q=C12
dρLabelID
Dic3xC3xC12144Dic3xC3xC12432,471

Semidirect products G=N:Q with N=C3xDic3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3xDic3):1C12 = C3xDic3:Dic3φ: C12/C6C2 ⊆ Out C3xDic348(C3xDic3):1C12432,428
(C3xDic3):2C12 = C3xDic32φ: C12/C6C2 ⊆ Out C3xDic348(C3xDic3):2C12432,425
(C3xDic3):3C12 = C32xDic3:C4φ: C12/C6C2 ⊆ Out C3xDic3144(C3xDic3):3C12432,472

Non-split extensions G=N.Q with N=C3xDic3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3xDic3).1C12 = C3xD6.Dic3φ: C12/C6C2 ⊆ Out C3xDic3484(C3xDic3).1C12432,416
(C3xDic3).2C12 = C3xS3xC3:C8φ: C12/C6C2 ⊆ Out C3xDic3484(C3xDic3).2C12432,414
(C3xDic3).3C12 = C9xC8:S3φ: C12/C6C2 ⊆ Out C3xDic31442(C3xDic3).3C12432,110
(C3xDic3).4C12 = C9xDic3:C4φ: C12/C6C2 ⊆ Out C3xDic3144(C3xDic3).4C12432,132
(C3xDic3).5C12 = C32xC8:S3φ: C12/C6C2 ⊆ Out C3xDic3144(C3xDic3).5C12432,465
(C3xDic3).6C12 = S3xC72φ: trivial image1442(C3xDic3).6C12432,109
(C3xDic3).7C12 = Dic3xC36φ: trivial image144(C3xDic3).7C12432,131
(C3xDic3).8C12 = S3xC3xC24φ: trivial image144(C3xDic3).8C12432,464

׿
x
:
Z
F
o
wr
Q
<