# Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=C12

Direct product G=N×Q with N=C3×Dic3 and Q=C12
dρLabelID
Dic3×C3×C12144Dic3xC3xC12432,471

Semidirect products G=N:Q with N=C3×Dic3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1C12 = C3×Dic3⋊Dic3φ: C12/C6C2 ⊆ Out C3×Dic348(C3xDic3):1C12432,428
(C3×Dic3)⋊2C12 = C3×Dic32φ: C12/C6C2 ⊆ Out C3×Dic348(C3xDic3):2C12432,425
(C3×Dic3)⋊3C12 = C32×Dic3⋊C4φ: C12/C6C2 ⊆ Out C3×Dic3144(C3xDic3):3C12432,472

Non-split extensions G=N.Q with N=C3×Dic3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1C12 = C3×D6.Dic3φ: C12/C6C2 ⊆ Out C3×Dic3484(C3xDic3).1C12432,416
(C3×Dic3).2C12 = C3×S3×C3⋊C8φ: C12/C6C2 ⊆ Out C3×Dic3484(C3xDic3).2C12432,414
(C3×Dic3).3C12 = C9×C8⋊S3φ: C12/C6C2 ⊆ Out C3×Dic31442(C3xDic3).3C12432,110
(C3×Dic3).4C12 = C9×Dic3⋊C4φ: C12/C6C2 ⊆ Out C3×Dic3144(C3xDic3).4C12432,132
(C3×Dic3).5C12 = C32×C8⋊S3φ: C12/C6C2 ⊆ Out C3×Dic3144(C3xDic3).5C12432,465
(C3×Dic3).6C12 = S3×C72φ: trivial image1442(C3xDic3).6C12432,109
(C3×Dic3).7C12 = Dic3×C36φ: trivial image144(C3xDic3).7C12432,131
(C3×Dic3).8C12 = S3×C3×C24φ: trivial image144(C3xDic3).8C12432,464

׿
×
𝔽