direct product, metabelian, supersoluble, monomial
Aliases: C3×D6.Dic3, C33⋊5M4(2), C12.103S32, D6.(C3×Dic3), (S3×C6).4C12, (S3×C12).1C6, C6.29(S3×C12), C12.46(S3×C6), C6.2(C6×Dic3), (S3×C12).13S3, C32⋊4C8⋊14C6, (C3×C12).180D6, Dic3.(C3×Dic3), (S3×C6).5Dic3, C6.33(S3×Dic3), (C3×Dic3).1C12, C32⋊4(C3×M4(2)), C32⋊13(C8⋊S3), (C3×Dic3).7Dic3, C32⋊8(C4.Dic3), (C32×Dic3).4C4, (C32×C12).62C22, (C3×C3⋊C8)⋊7C6, C3⋊C8⋊4(C3×S3), (C3×C3⋊C8)⋊11S3, C4.15(C3×S32), (S3×C3×C6).4C4, C3⋊3(C3×C8⋊S3), (S3×C3×C12).2C2, C2.3(C3×S3×Dic3), (C4×S3).2(C3×S3), (C32×C3⋊C8)⋊14C2, (C3×C6).86(C4×S3), C3⋊1(C3×C4.Dic3), (C3×C12).63(C2×C6), (C3×C6).19(C2×C12), (C3×C32⋊4C8)⋊18C2, (C32×C6).24(C2×C4), (C3×C6).46(C2×Dic3), SmallGroup(432,416)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D6.Dic3
G = < a,b,c,d,e | a3=b6=c2=1, d6=b3, e2=b3d3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=d5 >
Subgroups: 304 in 118 conjugacy classes, 44 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, M4(2), C3×S3, C3×C6, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3×Dic3, C3×C12, C3×C12, S3×C6, S3×C6, C62, C8⋊S3, C4.Dic3, C3×M4(2), S3×C32, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C32⋊4C8, C3×C24, S3×C12, S3×C12, C6×C12, C32×Dic3, C32×C12, S3×C3×C6, D6.Dic3, C3×C8⋊S3, C3×C4.Dic3, C32×C3⋊C8, C3×C32⋊4C8, S3×C3×C12, C3×D6.Dic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, M4(2), C3×S3, C4×S3, C2×Dic3, C2×C12, C3×Dic3, S32, S3×C6, C8⋊S3, C4.Dic3, C3×M4(2), S3×Dic3, S3×C12, C6×Dic3, C3×S32, D6.Dic3, C3×C8⋊S3, C3×C4.Dic3, C3×S3×Dic3, C3×D6.Dic3
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 11 9 7 5 3)(2 12 10 8 6 4)(13 15 17 19 21 23)(14 16 18 20 22 24)(25 27 29 31 33 35)(26 28 30 32 34 36)(37 47 45 43 41 39)(38 48 46 44 42 40)
(1 35)(2 36)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 45)(14 46)(15 47)(16 48)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 22 10 19 7 16 4 13)(2 15 11 24 8 21 5 18)(3 20 12 17 9 14 6 23)(25 46 34 43 31 40 28 37)(26 39 35 48 32 45 29 42)(27 44 36 41 33 38 30 47)
G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,35)(2,36)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,46,34,43,31,40,28,37)(26,39,35,48,32,45,29,42)(27,44,36,41,33,38,30,47)>;
G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,35)(2,36)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,46,34,43,31,40,28,37)(26,39,35,48,32,45,29,42)(27,44,36,41,33,38,30,47) );
G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,11,9,7,5,3),(2,12,10,8,6,4),(13,15,17,19,21,23),(14,16,18,20,22,24),(25,27,29,31,33,35),(26,28,30,32,34,36),(37,47,45,43,41,39),(38,48,46,44,42,40)], [(1,35),(2,36),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,45),(14,46),(15,47),(16,48),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,22,10,19,7,16,4,13),(2,15,11,24,8,21,5,18),(3,20,12,17,9,14,6,23),(25,46,34,43,31,40,28,37),(26,39,35,48,32,45,29,42),(27,44,36,41,33,38,30,47)]])
90 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | ··· | 6S | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12P | 12Q | ··· | 12V | 12W | ··· | 12AD | 24A | ··· | 24P | 24Q | 24R | 24S | 24T |
order | 1 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 6 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 1 | 1 | 6 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 18 | 18 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 18 | 18 | 18 | 18 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | - | + | - | + | - | |||||||||||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | S3 | S3 | Dic3 | D6 | Dic3 | M4(2) | C3×S3 | C3×S3 | C4×S3 | C3×Dic3 | S3×C6 | C3×Dic3 | C8⋊S3 | C4.Dic3 | C3×M4(2) | S3×C12 | C3×C8⋊S3 | C3×C4.Dic3 | S32 | S3×Dic3 | C3×S32 | D6.Dic3 | C3×S3×Dic3 | C3×D6.Dic3 |
kernel | C3×D6.Dic3 | C32×C3⋊C8 | C3×C32⋊4C8 | S3×C3×C12 | D6.Dic3 | C32×Dic3 | S3×C3×C6 | C3×C3⋊C8 | C32⋊4C8 | S3×C12 | C3×Dic3 | S3×C6 | C3×C3⋊C8 | S3×C12 | C3×Dic3 | C3×C12 | S3×C6 | C33 | C3⋊C8 | C4×S3 | C3×C6 | Dic3 | C12 | D6 | C32 | C32 | C32 | C6 | C3 | C3 | C12 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of C3×D6.Dic3 ►in GL6(𝔽73)
64 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
57 | 60 | 0 | 0 | 0 | 0 |
14 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
27 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[57,14,0,0,0,0,60,16,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[0,1,0,0,0,0,27,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3×D6.Dic3 in GAP, Magma, Sage, TeX
C_3\times D_6.{\rm Dic}_3
% in TeX
G:=Group("C3xD6.Dic3");
// GroupNames label
G:=SmallGroup(432,416);
// by ID
G=gap.SmallGroup(432,416);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,365,92,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^6=c^2=1,d^6=b^3,e^2=b^3*d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=d^5>;
// generators/relations