Copied to
clipboard

G = C3×S3×C3⋊C8order 432 = 24·33

Direct product of C3, S3 and C3⋊C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×S3×C3⋊C8, (C3×S3)⋊C24, C33(S3×C24), C338(C2×C8), C12.101S32, (S3×C6).3C12, (S3×C12).8C6, C6.28(S3×C12), C12.44(S3×C6), (S3×C32)⋊3C8, C325(C2×C24), C3214(S3×C8), C6.1(C6×Dic3), (S3×C12).14S3, C324C813C6, (C3×C12).178D6, D6.2(C3×Dic3), (S3×C6).8Dic3, C6.32(S3×Dic3), (C3×Dic3).2C12, (C3×Dic3).8Dic3, Dic3.2(C3×Dic3), (C32×Dic3).5C4, (C32×C12).60C22, C31(C6×C3⋊C8), (C3×C3⋊C8)⋊5C6, C4.13(C3×S32), (S3×C3×C6).3C4, C329(C2×C3⋊C8), (C32×C3⋊C8)⋊8C2, (S3×C3×C12).6C2, C2.1(C3×S3×Dic3), (C4×S3).3(C3×S3), (C3×C6).85(C4×S3), (C3×C6).17(C2×C12), (C3×C12).61(C2×C6), (C3×C324C8)⋊1C2, (C32×C6).22(C2×C4), (C3×C6).45(C2×Dic3), SmallGroup(432,414)

Series: Derived Chief Lower central Upper central

C1C32 — C3×S3×C3⋊C8
C1C3C32C3×C6C3×C12C32×C12S3×C3×C12 — C3×S3×C3⋊C8
C32 — C3×S3×C3⋊C8
C1C12

Generators and relations for C3×S3×C3⋊C8
 G = < a,b,c,d,e | a3=b3=c2=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 304 in 126 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3×S3, C3×C6, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3×Dic3, C3×C12, C3×C12, S3×C6, S3×C6, C62, S3×C8, C2×C3⋊C8, C2×C24, S3×C32, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C324C8, C3×C24, S3×C12, S3×C12, C6×C12, C32×Dic3, C32×C12, S3×C3×C6, S3×C3⋊C8, S3×C24, C6×C3⋊C8, C32×C3⋊C8, C3×C324C8, S3×C3×C12, C3×S3×C3⋊C8
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, Dic3, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C3×Dic3, S32, S3×C6, S3×C8, C2×C3⋊C8, C2×C24, C3×C3⋊C8, S3×Dic3, S3×C12, C6×Dic3, C3×S32, S3×C3⋊C8, S3×C24, C6×C3⋊C8, C3×S3×Dic3, C3×S3×C3⋊C8

Smallest permutation representation of C3×S3×C3⋊C8
On 48 points
Generators in S48
(1 30 35)(2 31 36)(3 32 37)(4 25 38)(5 26 39)(6 27 40)(7 28 33)(8 29 34)(9 41 20)(10 42 21)(11 43 22)(12 44 23)(13 45 24)(14 46 17)(15 47 18)(16 48 19)
(1 30 35)(2 31 36)(3 32 37)(4 25 38)(5 26 39)(6 27 40)(7 28 33)(8 29 34)(9 20 41)(10 21 42)(11 22 43)(12 23 44)(13 24 45)(14 17 46)(15 18 47)(16 19 48)
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 33)(24 34)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)
(1 35 30)(2 31 36)(3 37 32)(4 25 38)(5 39 26)(6 27 40)(7 33 28)(8 29 34)(9 41 20)(10 21 42)(11 43 22)(12 23 44)(13 45 24)(14 17 46)(15 47 18)(16 19 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,30,35)(2,31,36)(3,32,37)(4,25,38)(5,26,39)(6,27,40)(7,28,33)(8,29,34)(9,41,20)(10,42,21)(11,43,22)(12,44,23)(13,45,24)(14,46,17)(15,47,18)(16,48,19), (1,30,35)(2,31,36)(3,32,37)(4,25,38)(5,26,39)(6,27,40)(7,28,33)(8,29,34)(9,20,41)(10,21,42)(11,22,43)(12,23,44)(13,24,45)(14,17,46)(15,18,47)(16,19,48), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,35,30)(2,31,36)(3,37,32)(4,25,38)(5,39,26)(6,27,40)(7,33,28)(8,29,34)(9,41,20)(10,21,42)(11,43,22)(12,23,44)(13,45,24)(14,17,46)(15,47,18)(16,19,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,30,35)(2,31,36)(3,32,37)(4,25,38)(5,26,39)(6,27,40)(7,28,33)(8,29,34)(9,41,20)(10,42,21)(11,43,22)(12,44,23)(13,45,24)(14,46,17)(15,47,18)(16,48,19), (1,30,35)(2,31,36)(3,32,37)(4,25,38)(5,26,39)(6,27,40)(7,28,33)(8,29,34)(9,20,41)(10,21,42)(11,22,43)(12,23,44)(13,24,45)(14,17,46)(15,18,47)(16,19,48), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,35,30)(2,31,36)(3,37,32)(4,25,38)(5,39,26)(6,27,40)(7,33,28)(8,29,34)(9,41,20)(10,21,42)(11,43,22)(12,23,44)(13,45,24)(14,17,46)(15,47,18)(16,19,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,30,35),(2,31,36),(3,32,37),(4,25,38),(5,26,39),(6,27,40),(7,28,33),(8,29,34),(9,41,20),(10,42,21),(11,43,22),(12,44,23),(13,45,24),(14,46,17),(15,47,18),(16,48,19)], [(1,30,35),(2,31,36),(3,32,37),(4,25,38),(5,26,39),(6,27,40),(7,28,33),(8,29,34),(9,20,41),(10,21,42),(11,22,43),(12,23,44),(13,24,45),(14,17,46),(15,18,47),(16,19,48)], [(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,33),(24,34),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48)], [(1,35,30),(2,31,36),(3,37,32),(4,25,38),(5,39,26),(6,27,40),(7,33,28),(8,29,34),(9,41,20),(10,21,42),(11,43,22),(12,23,44),(13,45,24),(14,17,46),(15,47,18),(16,19,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

108 conjugacy classes

class 1 2A2B2C3A3B3C···3H3I3J3K4A4B4C4D6A6B6C···6H6I6J6K6L6M6N6O6P···6U8A8B8C8D8E8F8G8H12A12B12C12D12E···12P12Q12R12S12T12U···12Z12AA···12AF24A···24H24I···24T24U···24AB
order1222333···33334444666···666666666···6888888881212121212···121212121212···1212···1224···2424···2424···24
size1133112···24441133112···233334446···63333999911112···233334···46···63···36···69···9

108 irreducible representations

dim111111111111112222222222222222444444
type++++++-+-+-
imageC1C2C2C2C3C4C4C6C6C6C8C12C12C24S3S3Dic3D6Dic3C3×S3C3×S3C3⋊C8C4×S3C3×Dic3S3×C6C3×Dic3S3×C8C3×C3⋊C8S3×C12S3×C24S32S3×Dic3C3×S32S3×C3⋊C8C3×S3×Dic3C3×S3×C3⋊C8
kernelC3×S3×C3⋊C8C32×C3⋊C8C3×C324C8S3×C3×C12S3×C3⋊C8C32×Dic3S3×C3×C6C3×C3⋊C8C324C8S3×C12S3×C32C3×Dic3S3×C6C3×S3C3×C3⋊C8S3×C12C3×Dic3C3×C12S3×C6C3⋊C8C4×S3C3×S3C3×C6Dic3C12D6C32S3C6C3C12C6C4C3C2C1
# reps1111222222844161112122422424848112224

Matrix representation of C3×S3×C3⋊C8 in GL4(𝔽73) generated by

8000
0800
0010
0001
,
0100
727200
0010
0001
,
07200
72000
00720
00072
,
1000
0100
00721
00720
,
51000
05100
0001
0010
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,1,72,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,72,0,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,72,72,0,0,1,0],[51,0,0,0,0,51,0,0,0,0,0,1,0,0,1,0] >;

C3×S3×C3⋊C8 in GAP, Magma, Sage, TeX

C_3\times S_3\times C_3\rtimes C_8
% in TeX

G:=Group("C3xS3xC3:C8");
// GroupNames label

G:=SmallGroup(432,414);
// by ID

G=gap.SmallGroup(432,414);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,92,80,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽