# Extensions 1→N→G→Q→1 with N=Q8×C3×C9 and Q=C2

Direct product G=N×Q with N=Q8×C3×C9 and Q=C2
dρLabelID
Q8×C3×C18432Q8xC3xC18432,406

Semidirect products G=N:Q with N=Q8×C3×C9 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C3×C9)⋊1C2 = C3×Q82D9φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9):1C2432,157
(Q8×C3×C9)⋊2C2 = C36.20D6φ: C2/C1C2 ⊆ Out Q8×C3×C9216(Q8xC3xC9):2C2432,195
(Q8×C3×C9)⋊3C2 = C3×Q8×D9φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9):3C2432,364
(Q8×C3×C9)⋊4C2 = C3×Q83D9φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9):4C2432,365
(Q8×C3×C9)⋊5C2 = Q8×C9⋊S3φ: C2/C1C2 ⊆ Out Q8×C3×C9216(Q8xC3xC9):5C2432,392
(Q8×C3×C9)⋊6C2 = C36.29D6φ: C2/C1C2 ⊆ Out Q8×C3×C9216(Q8xC3xC9):6C2432,393
(Q8×C3×C9)⋊7C2 = C9×Q82S3φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9):7C2432,158
(Q8×C3×C9)⋊8C2 = SD16×C3×C9φ: C2/C1C2 ⊆ Out Q8×C3×C9216(Q8xC3xC9):8C2432,218
(Q8×C3×C9)⋊9C2 = S3×Q8×C9φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9):9C2432,366
(Q8×C3×C9)⋊10C2 = C9×Q83S3φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9):10C2432,367
(Q8×C3×C9)⋊11C2 = C4○D4×C3×C9φ: trivial image216(Q8xC3xC9):11C2432,409

Non-split extensions G=N.Q with N=Q8×C3×C9 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C3×C9).1C2 = C3×C9⋊Q16φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9).1C2432,156
(Q8×C3×C9).2C2 = C36.19D6φ: C2/C1C2 ⊆ Out Q8×C3×C9432(Q8xC3xC9).2C2432,194
(Q8×C3×C9).3C2 = C9×C3⋊Q16φ: C2/C1C2 ⊆ Out Q8×C3×C91444(Q8xC3xC9).3C2432,159
(Q8×C3×C9).4C2 = Q16×C3×C9φ: C2/C1C2 ⊆ Out Q8×C3×C9432(Q8xC3xC9).4C2432,221

׿
×
𝔽