Copied to
clipboard

G = C3×Q83D9order 432 = 24·33

Direct product of C3 and Q83D9

direct product, metabelian, supersoluble, monomial

Aliases: C3×Q83D9, D3610C6, C12.50D18, (C4×D9)⋊8C6, Q84(C3×D9), (C3×Q8)⋊7D9, C4.7(C6×D9), (C12×D9)⋊6C2, (Q8×C9)⋊13C6, (C3×D36)⋊10C2, C12.20(S3×C6), C36.27(C2×C6), D18.8(C2×C6), (C3×C12).104D6, C6.56(C22×D9), (C3×C36).32C22, C18.22(C22×C6), (C3×C18).45C23, Dic9.10(C2×C6), (C6×D9).14C22, (Q8×C32).23S3, C32.4(Q83S3), (C3×Dic9).17C22, (Q8×C3×C9)⋊4C2, C2.9(C2×C6×D9), C97(C3×C4○D4), C6.38(S3×C2×C6), (C3×C9)⋊18(C4○D4), (C3×Q8).28(C3×S3), C3.1(C3×Q83S3), (C3×C6).159(C22×S3), SmallGroup(432,365)

Series: Derived Chief Lower central Upper central

C1C18 — C3×Q83D9
C1C3C9C18C3×C18C6×D9C12×D9 — C3×Q83D9
C9C18 — C3×Q83D9
C1C6C3×Q8

Generators and relations for C3×Q83D9
 G = < a,b,c,d,e | a3=b4=d9=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >

Subgroups: 502 in 132 conjugacy classes, 58 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, C4○D4, D9, C18, C18, C3×S3, C3×C6, C4×S3, D12, C2×C12, C3×D4, C3×Q8, C3×Q8, C3×C9, Dic9, C36, C36, D18, C3×Dic3, C3×C12, S3×C6, Q83S3, C3×C4○D4, C3×D9, C3×C18, C4×D9, D36, Q8×C9, Q8×C9, S3×C12, C3×D12, Q8×C32, C3×Dic9, C3×C36, C6×D9, Q83D9, C3×Q83S3, C12×D9, C3×D36, Q8×C3×C9, C3×Q83D9
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C4○D4, D9, C3×S3, C22×S3, C22×C6, D18, S3×C6, Q83S3, C3×C4○D4, C3×D9, C22×D9, S3×C2×C6, C6×D9, Q83D9, C3×Q83S3, C2×C6×D9, C3×Q83D9

Smallest permutation representation of C3×Q83D9
On 144 points
Generators in S144
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)
(1 28 10 19)(2 29 11 20)(3 30 12 21)(4 31 13 22)(5 32 14 23)(6 33 15 24)(7 34 16 25)(8 35 17 26)(9 36 18 27)(37 55 46 64)(38 56 47 65)(39 57 48 66)(40 58 49 67)(41 59 50 68)(42 60 51 69)(43 61 52 70)(44 62 53 71)(45 63 54 72)(73 91 82 100)(74 92 83 101)(75 93 84 102)(76 94 85 103)(77 95 86 104)(78 96 87 105)(79 97 88 106)(80 98 89 107)(81 99 90 108)(109 136 118 127)(110 137 119 128)(111 138 120 129)(112 139 121 130)(113 140 122 131)(114 141 123 132)(115 142 124 133)(116 143 125 134)(117 144 126 135)
(1 46 10 37)(2 47 11 38)(3 48 12 39)(4 49 13 40)(5 50 14 41)(6 51 15 42)(7 52 16 43)(8 53 17 44)(9 54 18 45)(19 64 28 55)(20 65 29 56)(21 66 30 57)(22 67 31 58)(23 68 32 59)(24 69 33 60)(25 70 34 61)(26 71 35 62)(27 72 36 63)(73 118 82 109)(74 119 83 110)(75 120 84 111)(76 121 85 112)(77 122 86 113)(78 123 87 114)(79 124 88 115)(80 125 89 116)(81 126 90 117)(91 136 100 127)(92 137 101 128)(93 138 102 129)(94 139 103 130)(95 140 104 131)(96 141 105 132)(97 142 106 133)(98 143 107 134)(99 144 108 135)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 79)(2 78)(3 77)(4 76)(5 75)(6 74)(7 73)(8 81)(9 80)(10 88)(11 87)(12 86)(13 85)(14 84)(15 83)(16 82)(17 90)(18 89)(19 97)(20 96)(21 95)(22 94)(23 93)(24 92)(25 91)(26 99)(27 98)(28 106)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 108)(36 107)(37 115)(38 114)(39 113)(40 112)(41 111)(42 110)(43 109)(44 117)(45 116)(46 124)(47 123)(48 122)(49 121)(50 120)(51 119)(52 118)(53 126)(54 125)(55 133)(56 132)(57 131)(58 130)(59 129)(60 128)(61 127)(62 135)(63 134)(64 142)(65 141)(66 140)(67 139)(68 138)(69 137)(70 136)(71 144)(72 143)

G:=sub<Sym(144)| (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,28,10,19)(2,29,11,20)(3,30,12,21)(4,31,13,22)(5,32,14,23)(6,33,15,24)(7,34,16,25)(8,35,17,26)(9,36,18,27)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72)(73,91,82,100)(74,92,83,101)(75,93,84,102)(76,94,85,103)(77,95,86,104)(78,96,87,105)(79,97,88,106)(80,98,89,107)(81,99,90,108)(109,136,118,127)(110,137,119,128)(111,138,120,129)(112,139,121,130)(113,140,122,131)(114,141,123,132)(115,142,124,133)(116,143,125,134)(117,144,126,135), (1,46,10,37)(2,47,11,38)(3,48,12,39)(4,49,13,40)(5,50,14,41)(6,51,15,42)(7,52,16,43)(8,53,17,44)(9,54,18,45)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63)(73,118,82,109)(74,119,83,110)(75,120,84,111)(76,121,85,112)(77,122,86,113)(78,123,87,114)(79,124,88,115)(80,125,89,116)(81,126,90,117)(91,136,100,127)(92,137,101,128)(93,138,102,129)(94,139,103,130)(95,140,104,131)(96,141,105,132)(97,142,106,133)(98,143,107,134)(99,144,108,135), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,81)(9,80)(10,88)(11,87)(12,86)(13,85)(14,84)(15,83)(16,82)(17,90)(18,89)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,99)(27,98)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,108)(36,107)(37,115)(38,114)(39,113)(40,112)(41,111)(42,110)(43,109)(44,117)(45,116)(46,124)(47,123)(48,122)(49,121)(50,120)(51,119)(52,118)(53,126)(54,125)(55,133)(56,132)(57,131)(58,130)(59,129)(60,128)(61,127)(62,135)(63,134)(64,142)(65,141)(66,140)(67,139)(68,138)(69,137)(70,136)(71,144)(72,143)>;

G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,28,10,19)(2,29,11,20)(3,30,12,21)(4,31,13,22)(5,32,14,23)(6,33,15,24)(7,34,16,25)(8,35,17,26)(9,36,18,27)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72)(73,91,82,100)(74,92,83,101)(75,93,84,102)(76,94,85,103)(77,95,86,104)(78,96,87,105)(79,97,88,106)(80,98,89,107)(81,99,90,108)(109,136,118,127)(110,137,119,128)(111,138,120,129)(112,139,121,130)(113,140,122,131)(114,141,123,132)(115,142,124,133)(116,143,125,134)(117,144,126,135), (1,46,10,37)(2,47,11,38)(3,48,12,39)(4,49,13,40)(5,50,14,41)(6,51,15,42)(7,52,16,43)(8,53,17,44)(9,54,18,45)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63)(73,118,82,109)(74,119,83,110)(75,120,84,111)(76,121,85,112)(77,122,86,113)(78,123,87,114)(79,124,88,115)(80,125,89,116)(81,126,90,117)(91,136,100,127)(92,137,101,128)(93,138,102,129)(94,139,103,130)(95,140,104,131)(96,141,105,132)(97,142,106,133)(98,143,107,134)(99,144,108,135), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,81)(9,80)(10,88)(11,87)(12,86)(13,85)(14,84)(15,83)(16,82)(17,90)(18,89)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,99)(27,98)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,108)(36,107)(37,115)(38,114)(39,113)(40,112)(41,111)(42,110)(43,109)(44,117)(45,116)(46,124)(47,123)(48,122)(49,121)(50,120)(51,119)(52,118)(53,126)(54,125)(55,133)(56,132)(57,131)(58,130)(59,129)(60,128)(61,127)(62,135)(63,134)(64,142)(65,141)(66,140)(67,139)(68,138)(69,137)(70,136)(71,144)(72,143) );

G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144)], [(1,28,10,19),(2,29,11,20),(3,30,12,21),(4,31,13,22),(5,32,14,23),(6,33,15,24),(7,34,16,25),(8,35,17,26),(9,36,18,27),(37,55,46,64),(38,56,47,65),(39,57,48,66),(40,58,49,67),(41,59,50,68),(42,60,51,69),(43,61,52,70),(44,62,53,71),(45,63,54,72),(73,91,82,100),(74,92,83,101),(75,93,84,102),(76,94,85,103),(77,95,86,104),(78,96,87,105),(79,97,88,106),(80,98,89,107),(81,99,90,108),(109,136,118,127),(110,137,119,128),(111,138,120,129),(112,139,121,130),(113,140,122,131),(114,141,123,132),(115,142,124,133),(116,143,125,134),(117,144,126,135)], [(1,46,10,37),(2,47,11,38),(3,48,12,39),(4,49,13,40),(5,50,14,41),(6,51,15,42),(7,52,16,43),(8,53,17,44),(9,54,18,45),(19,64,28,55),(20,65,29,56),(21,66,30,57),(22,67,31,58),(23,68,32,59),(24,69,33,60),(25,70,34,61),(26,71,35,62),(27,72,36,63),(73,118,82,109),(74,119,83,110),(75,120,84,111),(76,121,85,112),(77,122,86,113),(78,123,87,114),(79,124,88,115),(80,125,89,116),(81,126,90,117),(91,136,100,127),(92,137,101,128),(93,138,102,129),(94,139,103,130),(95,140,104,131),(96,141,105,132),(97,142,106,133),(98,143,107,134),(99,144,108,135)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,79),(2,78),(3,77),(4,76),(5,75),(6,74),(7,73),(8,81),(9,80),(10,88),(11,87),(12,86),(13,85),(14,84),(15,83),(16,82),(17,90),(18,89),(19,97),(20,96),(21,95),(22,94),(23,93),(24,92),(25,91),(26,99),(27,98),(28,106),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,108),(36,107),(37,115),(38,114),(39,113),(40,112),(41,111),(42,110),(43,109),(44,117),(45,116),(46,124),(47,123),(48,122),(49,121),(50,120),(51,119),(52,118),(53,126),(54,125),(55,133),(56,132),(57,131),(58,130),(59,129),(60,128),(61,127),(62,135),(63,134),(64,142),(65,141),(66,140),(67,139),(68,138),(69,137),(70,136),(71,144),(72,143)]])

90 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D4E6A6B6C6D6E6F···6K9A···9I12A···12F12G···12O12P12Q12R12S18A···18I36A···36AA
order122223333344444666666···69···912···1212···121212121218···1836···36
size1118181811222222991122218···182···22···24···499992···24···4

90 irreducible representations

dim1111111122222222224444
type++++++++++
imageC1C2C2C2C3C6C6C6S3D6C4○D4D9C3×S3D18S3×C6C3×C4○D4C3×D9C6×D9Q83S3Q83D9C3×Q83S3C3×Q83D9
kernelC3×Q83D9C12×D9C3×D36Q8×C3×C9Q83D9C4×D9D36Q8×C9Q8×C32C3×C12C3×C9C3×Q8C3×Q8C12C12C9Q8C4C32C3C3C1
# reps13312662132329646181326

Matrix representation of C3×Q83D9 in GL4(𝔽37) generated by

26000
02600
0010
0001
,
1000
0100
00618
00031
,
1000
0100
001433
00323
,
33000
0900
0010
0001
,
0700
16000
002724
001910
G:=sub<GL(4,GF(37))| [26,0,0,0,0,26,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,6,0,0,0,18,31],[1,0,0,0,0,1,0,0,0,0,14,3,0,0,33,23],[33,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[0,16,0,0,7,0,0,0,0,0,27,19,0,0,24,10] >;

C3×Q83D9 in GAP, Magma, Sage, TeX

C_3\times Q_8\rtimes_3D_9
% in TeX

G:=Group("C3xQ8:3D9");
// GroupNames label

G:=SmallGroup(432,365);
// by ID

G=gap.SmallGroup(432,365);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,303,142,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=d^9=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽