Copied to
clipboard

G = C9×Q82S3order 432 = 24·33

Direct product of C9 and Q82S3

direct product, metabelian, supersoluble, monomial

Aliases: C9×Q82S3, C36.46D6, D12.2C18, C3⋊C83C18, (Q8×C9)⋊6S3, Q83(S3×C9), C6.9(D4×C9), C4.3(S3×C18), (C3×Q8)⋊3C18, C33(C9×SD16), (C3×C9)⋊13SD16, C12.51(S3×C6), C12.3(C2×C18), (C3×D12).2C6, (C9×D12).4C2, (C3×C18).36D4, C18.33(C3⋊D4), (C3×C36).45C22, (Q8×C32).18C6, C32.4(C3×SD16), (C9×C3⋊C8)⋊10C2, (Q8×C3×C9)⋊7C2, (C3×C3⋊C8).6C6, C2.6(C9×C3⋊D4), (C3×C6).57(C3×D4), C6.47(C3×C3⋊D4), (C3×Q82S3).C3, (C3×C12).29(C2×C6), (C3×Q8).34(C3×S3), C3.4(C3×Q82S3), SmallGroup(432,158)

Series: Derived Chief Lower central Upper central

C1C12 — C9×Q82S3
C1C3C6C3×C6C3×C12C3×C36C9×D12 — C9×Q82S3
C3C6C12 — C9×Q82S3
C1C18C36Q8×C9

Generators and relations for C9×Q82S3
 G = < a,b,c,d,e | a9=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ece=b-1c, ede=d-1 >

Subgroups: 168 in 72 conjugacy classes, 33 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C9, C9, C32, C12, C12, D6, C2×C6, SD16, C18, C18, C3×S3, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×Q8, C3×Q8, C3×C9, C36, C36, C2×C18, C3×C12, C3×C12, S3×C6, Q82S3, C3×SD16, S3×C9, C3×C18, C72, D4×C9, Q8×C9, Q8×C9, C3×C3⋊C8, C3×D12, Q8×C32, C3×C36, C3×C36, S3×C18, C9×SD16, C3×Q82S3, C9×C3⋊C8, C9×D12, Q8×C3×C9, C9×Q82S3
Quotients: C1, C2, C3, C22, S3, C6, D4, C9, D6, C2×C6, SD16, C18, C3×S3, C3⋊D4, C3×D4, C2×C18, S3×C6, Q82S3, C3×SD16, S3×C9, D4×C9, C3×C3⋊D4, S3×C18, C9×SD16, C3×Q82S3, C9×C3⋊D4, C9×Q82S3

Smallest permutation representation of C9×Q82S3
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 51 42 32)(2 52 43 33)(3 53 44 34)(4 54 45 35)(5 46 37 36)(6 47 38 28)(7 48 39 29)(8 49 40 30)(9 50 41 31)(10 21 138 134)(11 22 139 135)(12 23 140 127)(13 24 141 128)(14 25 142 129)(15 26 143 130)(16 27 144 131)(17 19 136 132)(18 20 137 133)(55 68 88 79)(56 69 89 80)(57 70 90 81)(58 71 82 73)(59 72 83 74)(60 64 84 75)(61 65 85 76)(62 66 86 77)(63 67 87 78)(91 104 124 115)(92 105 125 116)(93 106 126 117)(94 107 118 109)(95 108 119 110)(96 100 120 111)(97 101 121 112)(98 102 122 113)(99 103 123 114)
(1 67 42 78)(2 68 43 79)(3 69 44 80)(4 70 45 81)(5 71 37 73)(6 72 38 74)(7 64 39 75)(8 65 40 76)(9 66 41 77)(10 122 138 98)(11 123 139 99)(12 124 140 91)(13 125 141 92)(14 126 142 93)(15 118 143 94)(16 119 144 95)(17 120 136 96)(18 121 137 97)(19 100 132 111)(20 101 133 112)(21 102 134 113)(22 103 135 114)(23 104 127 115)(24 105 128 116)(25 106 129 117)(26 107 130 109)(27 108 131 110)(28 83 47 59)(29 84 48 60)(30 85 49 61)(31 86 50 62)(32 87 51 63)(33 88 52 55)(34 89 53 56)(35 90 54 57)(36 82 46 58)
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)
(1 114)(2 115)(3 116)(4 117)(5 109)(6 110)(7 111)(8 112)(9 113)(10 77)(11 78)(12 79)(13 80)(14 81)(15 73)(16 74)(17 75)(18 76)(19 84)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 82)(27 83)(28 95)(29 96)(30 97)(31 98)(32 99)(33 91)(34 92)(35 93)(36 94)(37 107)(38 108)(39 100)(40 101)(41 102)(42 103)(43 104)(44 105)(45 106)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 133)(62 134)(63 135)(64 136)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,51,42,32)(2,52,43,33)(3,53,44,34)(4,54,45,35)(5,46,37,36)(6,47,38,28)(7,48,39,29)(8,49,40,30)(9,50,41,31)(10,21,138,134)(11,22,139,135)(12,23,140,127)(13,24,141,128)(14,25,142,129)(15,26,143,130)(16,27,144,131)(17,19,136,132)(18,20,137,133)(55,68,88,79)(56,69,89,80)(57,70,90,81)(58,71,82,73)(59,72,83,74)(60,64,84,75)(61,65,85,76)(62,66,86,77)(63,67,87,78)(91,104,124,115)(92,105,125,116)(93,106,126,117)(94,107,118,109)(95,108,119,110)(96,100,120,111)(97,101,121,112)(98,102,122,113)(99,103,123,114), (1,67,42,78)(2,68,43,79)(3,69,44,80)(4,70,45,81)(5,71,37,73)(6,72,38,74)(7,64,39,75)(8,65,40,76)(9,66,41,77)(10,122,138,98)(11,123,139,99)(12,124,140,91)(13,125,141,92)(14,126,142,93)(15,118,143,94)(16,119,144,95)(17,120,136,96)(18,121,137,97)(19,100,132,111)(20,101,133,112)(21,102,134,113)(22,103,135,114)(23,104,127,115)(24,105,128,116)(25,106,129,117)(26,107,130,109)(27,108,131,110)(28,83,47,59)(29,84,48,60)(30,85,49,61)(31,86,50,62)(32,87,51,63)(33,88,52,55)(34,89,53,56)(35,90,54,57)(36,82,46,58), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,114)(2,115)(3,116)(4,117)(5,109)(6,110)(7,111)(8,112)(9,113)(10,77)(11,78)(12,79)(13,80)(14,81)(15,73)(16,74)(17,75)(18,76)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,82)(27,83)(28,95)(29,96)(30,97)(31,98)(32,99)(33,91)(34,92)(35,93)(36,94)(37,107)(38,108)(39,100)(40,101)(41,102)(42,103)(43,104)(44,105)(45,106)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,51,42,32)(2,52,43,33)(3,53,44,34)(4,54,45,35)(5,46,37,36)(6,47,38,28)(7,48,39,29)(8,49,40,30)(9,50,41,31)(10,21,138,134)(11,22,139,135)(12,23,140,127)(13,24,141,128)(14,25,142,129)(15,26,143,130)(16,27,144,131)(17,19,136,132)(18,20,137,133)(55,68,88,79)(56,69,89,80)(57,70,90,81)(58,71,82,73)(59,72,83,74)(60,64,84,75)(61,65,85,76)(62,66,86,77)(63,67,87,78)(91,104,124,115)(92,105,125,116)(93,106,126,117)(94,107,118,109)(95,108,119,110)(96,100,120,111)(97,101,121,112)(98,102,122,113)(99,103,123,114), (1,67,42,78)(2,68,43,79)(3,69,44,80)(4,70,45,81)(5,71,37,73)(6,72,38,74)(7,64,39,75)(8,65,40,76)(9,66,41,77)(10,122,138,98)(11,123,139,99)(12,124,140,91)(13,125,141,92)(14,126,142,93)(15,118,143,94)(16,119,144,95)(17,120,136,96)(18,121,137,97)(19,100,132,111)(20,101,133,112)(21,102,134,113)(22,103,135,114)(23,104,127,115)(24,105,128,116)(25,106,129,117)(26,107,130,109)(27,108,131,110)(28,83,47,59)(29,84,48,60)(30,85,49,61)(31,86,50,62)(32,87,51,63)(33,88,52,55)(34,89,53,56)(35,90,54,57)(36,82,46,58), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,114)(2,115)(3,116)(4,117)(5,109)(6,110)(7,111)(8,112)(9,113)(10,77)(11,78)(12,79)(13,80)(14,81)(15,73)(16,74)(17,75)(18,76)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,82)(27,83)(28,95)(29,96)(30,97)(31,98)(32,99)(33,91)(34,92)(35,93)(36,94)(37,107)(38,108)(39,100)(40,101)(41,102)(42,103)(43,104)(44,105)(45,106)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,51,42,32),(2,52,43,33),(3,53,44,34),(4,54,45,35),(5,46,37,36),(6,47,38,28),(7,48,39,29),(8,49,40,30),(9,50,41,31),(10,21,138,134),(11,22,139,135),(12,23,140,127),(13,24,141,128),(14,25,142,129),(15,26,143,130),(16,27,144,131),(17,19,136,132),(18,20,137,133),(55,68,88,79),(56,69,89,80),(57,70,90,81),(58,71,82,73),(59,72,83,74),(60,64,84,75),(61,65,85,76),(62,66,86,77),(63,67,87,78),(91,104,124,115),(92,105,125,116),(93,106,126,117),(94,107,118,109),(95,108,119,110),(96,100,120,111),(97,101,121,112),(98,102,122,113),(99,103,123,114)], [(1,67,42,78),(2,68,43,79),(3,69,44,80),(4,70,45,81),(5,71,37,73),(6,72,38,74),(7,64,39,75),(8,65,40,76),(9,66,41,77),(10,122,138,98),(11,123,139,99),(12,124,140,91),(13,125,141,92),(14,126,142,93),(15,118,143,94),(16,119,144,95),(17,120,136,96),(18,121,137,97),(19,100,132,111),(20,101,133,112),(21,102,134,113),(22,103,135,114),(23,104,127,115),(24,105,128,116),(25,106,129,117),(26,107,130,109),(27,108,131,110),(28,83,47,59),(29,84,48,60),(30,85,49,61),(31,86,50,62),(32,87,51,63),(33,88,52,55),(34,89,53,56),(35,90,54,57),(36,82,46,58)], [(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144)], [(1,114),(2,115),(3,116),(4,117),(5,109),(6,110),(7,111),(8,112),(9,113),(10,77),(11,78),(12,79),(13,80),(14,81),(15,73),(16,74),(17,75),(18,76),(19,84),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,82),(27,83),(28,95),(29,96),(30,97),(31,98),(32,99),(33,91),(34,92),(35,93),(36,94),(37,107),(38,108),(39,100),(40,101),(41,102),(42,103),(43,104),(44,105),(45,106),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,133),(62,134),(63,135),(64,136),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144)]])

108 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B6A6B6C6D6E6F6G8A8B9A···9F9G···9L12A12B12C···12M18A···18F18G···18L18M···18R24A24B24C24D36A···36F36G···36AD72A···72L
order12233333446666666889···99···9121212···1218···1818···1818···182424242436···3636···3672···72
size11121122224112221212661···12···2224···41···12···212···1266662···24···46···6

108 irreducible representations

dim111111111111222222222222222444
type++++++++
imageC1C2C2C2C3C6C6C6C9C18C18C18S3D4D6SD16C3×S3C3⋊D4C3×D4S3×C6C3×SD16S3×C9D4×C9C3×C3⋊D4S3×C18C9×SD16C9×C3⋊D4Q82S3C3×Q82S3C9×Q82S3
kernelC9×Q82S3C9×C3⋊C8C9×D12Q8×C3×C9C3×Q82S3C3×C3⋊C8C3×D12Q8×C32Q82S3C3⋊C8D12C3×Q8Q8×C9C3×C18C36C3×C9C3×Q8C18C3×C6C12C32Q8C6C6C4C3C2C9C3C1
# reps11112222666611122222466461212126

Matrix representation of C9×Q82S3 in GL4(𝔽73) generated by

16000
01600
0010
0001
,
72000
07200
0001
00720
,
72000
25100
006066
006613
,
64000
30800
0010
0001
,
216300
445200
002636
003647
G:=sub<GL(4,GF(73))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,0,72,0,0,0,0,0,72,0,0,1,0],[72,25,0,0,0,1,0,0,0,0,60,66,0,0,66,13],[64,30,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[21,44,0,0,63,52,0,0,0,0,26,36,0,0,36,47] >;

C9×Q82S3 in GAP, Magma, Sage, TeX

C_9\times Q_8\rtimes_2S_3
% in TeX

G:=Group("C9xQ8:2S3");
// GroupNames label

G:=SmallGroup(432,158);
// by ID

G=gap.SmallGroup(432,158);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-3,-2,-3,197,512,142,2355,1186,192,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽