Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C18

Direct product G=NxQ with N=C2xDic3 and Q=C18
dρLabelID
Dic3xC2xC18144Dic3xC2xC18432,373

Semidirect products G=N:Q with N=C2xDic3 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2xDic3):1C18 = C9xD6:C4φ: C18/C9C2 ⊆ Out C2xDic3144(C2xDic3):1C18432,135
(C2xDic3):2C18 = C9xC6.D4φ: C18/C9C2 ⊆ Out C2xDic372(C2xDic3):2C18432,165
(C2xDic3):3C18 = C9xD4:2S3φ: C18/C9C2 ⊆ Out C2xDic3724(C2xDic3):3C18432,359
(C2xDic3):4C18 = C18xC3:D4φ: C18/C9C2 ⊆ Out C2xDic372(C2xDic3):4C18432,375
(C2xDic3):5C18 = S3xC2xC36φ: trivial image144(C2xDic3):5C18432,345

Non-split extensions G=N.Q with N=C2xDic3 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2xDic3).1C18 = C9xDic3:C4φ: C18/C9C2 ⊆ Out C2xDic3144(C2xDic3).1C18432,132
(C2xDic3).2C18 = C9xC4:Dic3φ: C18/C9C2 ⊆ Out C2xDic3144(C2xDic3).2C18432,133
(C2xDic3).3C18 = C18xDic6φ: C18/C9C2 ⊆ Out C2xDic3144(C2xDic3).3C18432,341
(C2xDic3).4C18 = Dic3xC36φ: trivial image144(C2xDic3).4C18432,131

׿
x
:
Z
F
o
wr
Q
<