Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C9⋊S3

Direct product G=N×Q with N=C2×C4 and Q=C9⋊S3
dρLabelID
C2×C4×C9⋊S3216C2xC4xC9:S3432,381

Semidirect products G=N:Q with N=C2×C4 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(C9⋊S3) = C6.11D36φ: C9⋊S3/C3×C9C2 ⊆ Aut C2×C4216(C2xC4):1(C9:S3)432,183
(C2×C4)⋊2(C9⋊S3) = C2×C36⋊S3φ: C9⋊S3/C3×C9C2 ⊆ Aut C2×C4216(C2xC4):2(C9:S3)432,382
(C2×C4)⋊3(C9⋊S3) = C36.70D6φ: C9⋊S3/C3×C9C2 ⊆ Aut C2×C4216(C2xC4):3(C9:S3)432,383

Non-split extensions G=N.Q with N=C2×C4 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(C9⋊S3) = C6.Dic18φ: C9⋊S3/C3×C9C2 ⊆ Aut C2×C4432(C2xC4).1(C9:S3)432,181
(C2×C4).2(C9⋊S3) = C36.69D6φ: C9⋊S3/C3×C9C2 ⊆ Aut C2×C4216(C2xC4).2(C9:S3)432,179
(C2×C4).3(C9⋊S3) = C36⋊Dic3φ: C9⋊S3/C3×C9C2 ⊆ Aut C2×C4432(C2xC4).3(C9:S3)432,182
(C2×C4).4(C9⋊S3) = C2×C12.D9φ: C9⋊S3/C3×C9C2 ⊆ Aut C2×C4432(C2xC4).4(C9:S3)432,380
(C2×C4).5(C9⋊S3) = C2×C36.S3central extension (φ=1)432(C2xC4).5(C9:S3)432,178
(C2×C4).6(C9⋊S3) = C4×C9⋊Dic3central extension (φ=1)432(C2xC4).6(C9:S3)432,180

׿
×
𝔽