Copied to
clipboard

G = C2×C36⋊S3order 432 = 24·33

Direct product of C2 and C36⋊S3

direct product, metabelian, supersoluble, monomial

Aliases: C2×C36⋊S3, C61D36, C367D6, C181D12, C127D18, C62.136D6, (C2×C36)⋊3S3, (C6×C36)⋊7C2, C92(C2×D12), C32(C2×D36), (C2×C12)⋊3D9, (C3×C18)⋊6D4, (C6×C12).32S3, (C3×C6).60D12, (C2×C6).43D18, (C2×C18).43D6, (C3×C36)⋊10C22, (C3×C12).195D6, C6.41(C22×D9), C32.5(C2×D12), C6.6(C12⋊S3), (C6×C18).49C22, (C3×C18).50C23, C18.41(C22×S3), C42(C2×C9⋊S3), (C3×C9)⋊12(C2×D4), (C2×C4)⋊2(C9⋊S3), C3.(C2×C12⋊S3), C12.63(C2×C3⋊S3), (C2×C9⋊S3)⋊8C22, (C22×C9⋊S3)⋊4C2, C2.4(C22×C9⋊S3), (C2×C12).9(C3⋊S3), C22.10(C2×C9⋊S3), C6.30(C22×C3⋊S3), (C3×C6).164(C22×S3), (C2×C6).36(C2×C3⋊S3), SmallGroup(432,382)

Series: Derived Chief Lower central Upper central

C1C3×C18 — C2×C36⋊S3
C1C3C32C3×C9C3×C18C2×C9⋊S3C22×C9⋊S3 — C2×C36⋊S3
C3×C9C3×C18 — C2×C36⋊S3
C1C22C2×C4

Generators and relations for C2×C36⋊S3
 G = < a,b,c,d | a2=b36=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 2132 in 270 conjugacy classes, 91 normal (17 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C9, C32, C12, D6, C2×C6, C2×C6, C2×D4, D9, C18, C3⋊S3, C3×C6, C3×C6, D12, C2×C12, C2×C12, C22×S3, C3×C9, C36, D18, C2×C18, C3×C12, C2×C3⋊S3, C62, C2×D12, C9⋊S3, C3×C18, C3×C18, D36, C2×C36, C22×D9, C12⋊S3, C6×C12, C22×C3⋊S3, C3×C36, C2×C9⋊S3, C2×C9⋊S3, C6×C18, C2×D36, C2×C12⋊S3, C36⋊S3, C6×C36, C22×C9⋊S3, C2×C36⋊S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, C3⋊S3, D12, C22×S3, D18, C2×C3⋊S3, C2×D12, C9⋊S3, D36, C22×D9, C12⋊S3, C22×C3⋊S3, C2×C9⋊S3, C2×D36, C2×C12⋊S3, C36⋊S3, C22×C9⋊S3, C2×C36⋊S3

Smallest permutation representation of C2×C36⋊S3
On 216 points
Generators in S216
(1 113)(2 114)(3 115)(4 116)(5 117)(6 118)(7 119)(8 120)(9 121)(10 122)(11 123)(12 124)(13 125)(14 126)(15 127)(16 128)(17 129)(18 130)(19 131)(20 132)(21 133)(22 134)(23 135)(24 136)(25 137)(26 138)(27 139)(28 140)(29 141)(30 142)(31 143)(32 144)(33 109)(34 110)(35 111)(36 112)(37 203)(38 204)(39 205)(40 206)(41 207)(42 208)(43 209)(44 210)(45 211)(46 212)(47 213)(48 214)(49 215)(50 216)(51 181)(52 182)(53 183)(54 184)(55 185)(56 186)(57 187)(58 188)(59 189)(60 190)(61 191)(62 192)(63 193)(64 194)(65 195)(66 196)(67 197)(68 198)(69 199)(70 200)(71 201)(72 202)(73 155)(74 156)(75 157)(76 158)(77 159)(78 160)(79 161)(80 162)(81 163)(82 164)(83 165)(84 166)(85 167)(86 168)(87 169)(88 170)(89 171)(90 172)(91 173)(92 174)(93 175)(94 176)(95 177)(96 178)(97 179)(98 180)(99 145)(100 146)(101 147)(102 148)(103 149)(104 150)(105 151)(106 152)(107 153)(108 154)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216)
(1 152 185)(2 153 186)(3 154 187)(4 155 188)(5 156 189)(6 157 190)(7 158 191)(8 159 192)(9 160 193)(10 161 194)(11 162 195)(12 163 196)(13 164 197)(14 165 198)(15 166 199)(16 167 200)(17 168 201)(18 169 202)(19 170 203)(20 171 204)(21 172 205)(22 173 206)(23 174 207)(24 175 208)(25 176 209)(26 177 210)(27 178 211)(28 179 212)(29 180 213)(30 145 214)(31 146 215)(32 147 216)(33 148 181)(34 149 182)(35 150 183)(36 151 184)(37 131 88)(38 132 89)(39 133 90)(40 134 91)(41 135 92)(42 136 93)(43 137 94)(44 138 95)(45 139 96)(46 140 97)(47 141 98)(48 142 99)(49 143 100)(50 144 101)(51 109 102)(52 110 103)(53 111 104)(54 112 105)(55 113 106)(56 114 107)(57 115 108)(58 116 73)(59 117 74)(60 118 75)(61 119 76)(62 120 77)(63 121 78)(64 122 79)(65 123 80)(66 124 81)(67 125 82)(68 126 83)(69 127 84)(70 128 85)(71 129 86)(72 130 87)
(1 140)(2 139)(3 138)(4 137)(5 136)(6 135)(7 134)(8 133)(9 132)(10 131)(11 130)(12 129)(13 128)(14 127)(15 126)(16 125)(17 124)(18 123)(19 122)(20 121)(21 120)(22 119)(23 118)(24 117)(25 116)(26 115)(27 114)(28 113)(29 112)(30 111)(31 110)(32 109)(33 144)(34 143)(35 142)(36 141)(37 161)(38 160)(39 159)(40 158)(41 157)(42 156)(43 155)(44 154)(45 153)(46 152)(47 151)(48 150)(49 149)(50 148)(51 147)(52 146)(53 145)(54 180)(55 179)(56 178)(57 177)(58 176)(59 175)(60 174)(61 173)(62 172)(63 171)(64 170)(65 169)(66 168)(67 167)(68 166)(69 165)(70 164)(71 163)(72 162)(73 209)(74 208)(75 207)(76 206)(77 205)(78 204)(79 203)(80 202)(81 201)(82 200)(83 199)(84 198)(85 197)(86 196)(87 195)(88 194)(89 193)(90 192)(91 191)(92 190)(93 189)(94 188)(95 187)(96 186)(97 185)(98 184)(99 183)(100 182)(101 181)(102 216)(103 215)(104 214)(105 213)(106 212)(107 211)(108 210)

G:=sub<Sym(216)| (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,133)(22,134)(23,135)(24,136)(25,137)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,109)(34,110)(35,111)(36,112)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,209)(44,210)(45,211)(46,212)(47,213)(48,214)(49,215)(50,216)(51,181)(52,182)(53,183)(54,184)(55,185)(56,186)(57,187)(58,188)(59,189)(60,190)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,197)(68,198)(69,199)(70,200)(71,201)(72,202)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,145)(100,146)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,152,185)(2,153,186)(3,154,187)(4,155,188)(5,156,189)(6,157,190)(7,158,191)(8,159,192)(9,160,193)(10,161,194)(11,162,195)(12,163,196)(13,164,197)(14,165,198)(15,166,199)(16,167,200)(17,168,201)(18,169,202)(19,170,203)(20,171,204)(21,172,205)(22,173,206)(23,174,207)(24,175,208)(25,176,209)(26,177,210)(27,178,211)(28,179,212)(29,180,213)(30,145,214)(31,146,215)(32,147,216)(33,148,181)(34,149,182)(35,150,183)(36,151,184)(37,131,88)(38,132,89)(39,133,90)(40,134,91)(41,135,92)(42,136,93)(43,137,94)(44,138,95)(45,139,96)(46,140,97)(47,141,98)(48,142,99)(49,143,100)(50,144,101)(51,109,102)(52,110,103)(53,111,104)(54,112,105)(55,113,106)(56,114,107)(57,115,108)(58,116,73)(59,117,74)(60,118,75)(61,119,76)(62,120,77)(63,121,78)(64,122,79)(65,123,80)(66,124,81)(67,125,82)(68,126,83)(69,127,84)(70,128,85)(71,129,86)(72,130,87), (1,140)(2,139)(3,138)(4,137)(5,136)(6,135)(7,134)(8,133)(9,132)(10,131)(11,130)(12,129)(13,128)(14,127)(15,126)(16,125)(17,124)(18,123)(19,122)(20,121)(21,120)(22,119)(23,118)(24,117)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,144)(34,143)(35,142)(36,141)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,155)(44,154)(45,153)(46,152)(47,151)(48,150)(49,149)(50,148)(51,147)(52,146)(53,145)(54,180)(55,179)(56,178)(57,177)(58,176)(59,175)(60,174)(61,173)(62,172)(63,171)(64,170)(65,169)(66,168)(67,167)(68,166)(69,165)(70,164)(71,163)(72,162)(73,209)(74,208)(75,207)(76,206)(77,205)(78,204)(79,203)(80,202)(81,201)(82,200)(83,199)(84,198)(85,197)(86,196)(87,195)(88,194)(89,193)(90,192)(91,191)(92,190)(93,189)(94,188)(95,187)(96,186)(97,185)(98,184)(99,183)(100,182)(101,181)(102,216)(103,215)(104,214)(105,213)(106,212)(107,211)(108,210)>;

G:=Group( (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,133)(22,134)(23,135)(24,136)(25,137)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,109)(34,110)(35,111)(36,112)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,209)(44,210)(45,211)(46,212)(47,213)(48,214)(49,215)(50,216)(51,181)(52,182)(53,183)(54,184)(55,185)(56,186)(57,187)(58,188)(59,189)(60,190)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,197)(68,198)(69,199)(70,200)(71,201)(72,202)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,145)(100,146)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216), (1,152,185)(2,153,186)(3,154,187)(4,155,188)(5,156,189)(6,157,190)(7,158,191)(8,159,192)(9,160,193)(10,161,194)(11,162,195)(12,163,196)(13,164,197)(14,165,198)(15,166,199)(16,167,200)(17,168,201)(18,169,202)(19,170,203)(20,171,204)(21,172,205)(22,173,206)(23,174,207)(24,175,208)(25,176,209)(26,177,210)(27,178,211)(28,179,212)(29,180,213)(30,145,214)(31,146,215)(32,147,216)(33,148,181)(34,149,182)(35,150,183)(36,151,184)(37,131,88)(38,132,89)(39,133,90)(40,134,91)(41,135,92)(42,136,93)(43,137,94)(44,138,95)(45,139,96)(46,140,97)(47,141,98)(48,142,99)(49,143,100)(50,144,101)(51,109,102)(52,110,103)(53,111,104)(54,112,105)(55,113,106)(56,114,107)(57,115,108)(58,116,73)(59,117,74)(60,118,75)(61,119,76)(62,120,77)(63,121,78)(64,122,79)(65,123,80)(66,124,81)(67,125,82)(68,126,83)(69,127,84)(70,128,85)(71,129,86)(72,130,87), (1,140)(2,139)(3,138)(4,137)(5,136)(6,135)(7,134)(8,133)(9,132)(10,131)(11,130)(12,129)(13,128)(14,127)(15,126)(16,125)(17,124)(18,123)(19,122)(20,121)(21,120)(22,119)(23,118)(24,117)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,144)(34,143)(35,142)(36,141)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,155)(44,154)(45,153)(46,152)(47,151)(48,150)(49,149)(50,148)(51,147)(52,146)(53,145)(54,180)(55,179)(56,178)(57,177)(58,176)(59,175)(60,174)(61,173)(62,172)(63,171)(64,170)(65,169)(66,168)(67,167)(68,166)(69,165)(70,164)(71,163)(72,162)(73,209)(74,208)(75,207)(76,206)(77,205)(78,204)(79,203)(80,202)(81,201)(82,200)(83,199)(84,198)(85,197)(86,196)(87,195)(88,194)(89,193)(90,192)(91,191)(92,190)(93,189)(94,188)(95,187)(96,186)(97,185)(98,184)(99,183)(100,182)(101,181)(102,216)(103,215)(104,214)(105,213)(106,212)(107,211)(108,210) );

G=PermutationGroup([[(1,113),(2,114),(3,115),(4,116),(5,117),(6,118),(7,119),(8,120),(9,121),(10,122),(11,123),(12,124),(13,125),(14,126),(15,127),(16,128),(17,129),(18,130),(19,131),(20,132),(21,133),(22,134),(23,135),(24,136),(25,137),(26,138),(27,139),(28,140),(29,141),(30,142),(31,143),(32,144),(33,109),(34,110),(35,111),(36,112),(37,203),(38,204),(39,205),(40,206),(41,207),(42,208),(43,209),(44,210),(45,211),(46,212),(47,213),(48,214),(49,215),(50,216),(51,181),(52,182),(53,183),(54,184),(55,185),(56,186),(57,187),(58,188),(59,189),(60,190),(61,191),(62,192),(63,193),(64,194),(65,195),(66,196),(67,197),(68,198),(69,199),(70,200),(71,201),(72,202),(73,155),(74,156),(75,157),(76,158),(77,159),(78,160),(79,161),(80,162),(81,163),(82,164),(83,165),(84,166),(85,167),(86,168),(87,169),(88,170),(89,171),(90,172),(91,173),(92,174),(93,175),(94,176),(95,177),(96,178),(97,179),(98,180),(99,145),(100,146),(101,147),(102,148),(103,149),(104,150),(105,151),(106,152),(107,153),(108,154)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216)], [(1,152,185),(2,153,186),(3,154,187),(4,155,188),(5,156,189),(6,157,190),(7,158,191),(8,159,192),(9,160,193),(10,161,194),(11,162,195),(12,163,196),(13,164,197),(14,165,198),(15,166,199),(16,167,200),(17,168,201),(18,169,202),(19,170,203),(20,171,204),(21,172,205),(22,173,206),(23,174,207),(24,175,208),(25,176,209),(26,177,210),(27,178,211),(28,179,212),(29,180,213),(30,145,214),(31,146,215),(32,147,216),(33,148,181),(34,149,182),(35,150,183),(36,151,184),(37,131,88),(38,132,89),(39,133,90),(40,134,91),(41,135,92),(42,136,93),(43,137,94),(44,138,95),(45,139,96),(46,140,97),(47,141,98),(48,142,99),(49,143,100),(50,144,101),(51,109,102),(52,110,103),(53,111,104),(54,112,105),(55,113,106),(56,114,107),(57,115,108),(58,116,73),(59,117,74),(60,118,75),(61,119,76),(62,120,77),(63,121,78),(64,122,79),(65,123,80),(66,124,81),(67,125,82),(68,126,83),(69,127,84),(70,128,85),(71,129,86),(72,130,87)], [(1,140),(2,139),(3,138),(4,137),(5,136),(6,135),(7,134),(8,133),(9,132),(10,131),(11,130),(12,129),(13,128),(14,127),(15,126),(16,125),(17,124),(18,123),(19,122),(20,121),(21,120),(22,119),(23,118),(24,117),(25,116),(26,115),(27,114),(28,113),(29,112),(30,111),(31,110),(32,109),(33,144),(34,143),(35,142),(36,141),(37,161),(38,160),(39,159),(40,158),(41,157),(42,156),(43,155),(44,154),(45,153),(46,152),(47,151),(48,150),(49,149),(50,148),(51,147),(52,146),(53,145),(54,180),(55,179),(56,178),(57,177),(58,176),(59,175),(60,174),(61,173),(62,172),(63,171),(64,170),(65,169),(66,168),(67,167),(68,166),(69,165),(70,164),(71,163),(72,162),(73,209),(74,208),(75,207),(76,206),(77,205),(78,204),(79,203),(80,202),(81,201),(82,200),(83,199),(84,198),(85,197),(86,196),(87,195),(88,194),(89,193),(90,192),(91,191),(92,190),(93,189),(94,188),(95,187),(96,186),(97,185),(98,184),(99,183),(100,182),(101,181),(102,216),(103,215),(104,214),(105,213),(106,212),(107,211),(108,210)]])

114 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A···6L9A···9I12A···12P18A···18AA36A···36AJ
order122222223333446···69···912···1218···1836···36
size1111545454542222222···22···22···22···22···2

114 irreducible representations

dim11112222222222222
type+++++++++++++++++
imageC1C2C2C2S3S3D4D6D6D6D6D9D12D12D18D18D36
kernelC2×C36⋊S3C36⋊S3C6×C36C22×C9⋊S3C2×C36C6×C12C3×C18C36C2×C18C3×C12C62C2×C12C18C3×C6C12C2×C6C6
# reps14123126321912418936

Matrix representation of C2×C36⋊S3 in GL4(𝔽37) generated by

36000
03600
00360
00036
,
42900
81200
003636
0010
,
0100
363600
003636
0010
,
42900
253300
00360
0011
G:=sub<GL(4,GF(37))| [36,0,0,0,0,36,0,0,0,0,36,0,0,0,0,36],[4,8,0,0,29,12,0,0,0,0,36,1,0,0,36,0],[0,36,0,0,1,36,0,0,0,0,36,1,0,0,36,0],[4,25,0,0,29,33,0,0,0,0,36,1,0,0,0,1] >;

C2×C36⋊S3 in GAP, Magma, Sage, TeX

C_2\times C_{36}\rtimes S_3
% in TeX

G:=Group("C2xC36:S3");
// GroupNames label

G:=SmallGroup(432,382);
// by ID

G=gap.SmallGroup(432,382);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,254,58,6164,662,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^36=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽