metabelian, supersoluble, monomial, A-group
Aliases: C9⋊S3, C3⋊D9, C32.3S3, (C3×C9)⋊3C2, C3.(C3⋊S3), SmallGroup(54,7)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C9 — C9⋊S3 |
Generators and relations for C9⋊S3
G = < a,b,c | a9=b3=c2=1, ab=ba, cac=a-1, cbc=b-1 >
Character table of C9⋊S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | |
size | 1 | 27 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | -1 | -1 | 2 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ8 | 2 | 0 | -1 | -1 | 2 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | 2 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | -1 | 2 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | -1 | 2 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ12 | 2 | 0 | 2 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | -1 | -1 | 2 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | 2 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | -1 | 2 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | orthogonal lifted from D9 |
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 11 21)(2 12 22)(3 13 23)(4 14 24)(5 15 25)(6 16 26)(7 17 27)(8 18 19)(9 10 20)
(2 9)(3 8)(4 7)(5 6)(10 22)(11 21)(12 20)(13 19)(14 27)(15 26)(16 25)(17 24)(18 23)
G:=sub<Sym(27)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,19)(9,10,20), (2,9)(3,8)(4,7)(5,6)(10,22)(11,21)(12,20)(13,19)(14,27)(15,26)(16,25)(17,24)(18,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,19)(9,10,20), (2,9)(3,8)(4,7)(5,6)(10,22)(11,21)(12,20)(13,19)(14,27)(15,26)(16,25)(17,24)(18,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,11,21),(2,12,22),(3,13,23),(4,14,24),(5,15,25),(6,16,26),(7,17,27),(8,18,19),(9,10,20)], [(2,9),(3,8),(4,7),(5,6),(10,22),(11,21),(12,20),(13,19),(14,27),(15,26),(16,25),(17,24),(18,23)]])
G:=TransitiveGroup(27,10);
C9⋊S3 is a maximal subgroup of
S3×D9 C32⋊D9 He3.S3 He3.2S3 C9⋊D9 C27⋊S3 C33.S3 He3.4S3 C32⋊4D9 C9⋊S4 C32.3S4 C3⋊D45 C3⋊D63
C9⋊S3 is a maximal quotient of
C9⋊Dic3 C9⋊D9 C32⋊2D9 C27⋊S3 C32⋊4D9 C9⋊S4 C32.3S4 C3⋊D45 C3⋊D63
Matrix representation of C9⋊S3 ►in GL4(𝔽19) generated by
12 | 17 | 0 | 0 |
2 | 14 | 0 | 0 |
0 | 0 | 2 | 14 |
0 | 0 | 5 | 7 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 18 | 18 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
18 | 18 | 0 | 0 |
0 | 0 | 18 | 18 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(19))| [12,2,0,0,17,14,0,0,0,0,2,5,0,0,14,7],[1,0,0,0,0,1,0,0,0,0,18,1,0,0,18,0],[1,18,0,0,0,18,0,0,0,0,18,0,0,0,18,1] >;
C9⋊S3 in GAP, Magma, Sage, TeX
C_9\rtimes S_3
% in TeX
G:=Group("C9:S3");
// GroupNames label
G:=SmallGroup(54,7);
// by ID
G=gap.SmallGroup(54,7);
# by ID
G:=PCGroup([4,-2,-3,-3,-3,177,149,146,579]);
// Polycyclic
G:=Group<a,b,c|a^9=b^3=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C9⋊S3 in TeX
Character table of C9⋊S3 in TeX