Extensions 1→N→G→Q→1 with N=D5×C22 and Q=C2

Direct product G=N×Q with N=D5×C22 and Q=C2
dρLabelID
D5×C2×C22220D5xC2xC22440,49

Semidirect products G=N:Q with N=D5×C22 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C22)⋊1C2 = C55⋊D4φ: C2/C1C2 ⊆ Out D5×C222204-(D5xC22):1C2440,20
(D5×C22)⋊2C2 = C11⋊D20φ: C2/C1C2 ⊆ Out D5×C222204+(D5xC22):2C2440,22
(D5×C22)⋊3C2 = C2×D5×D11φ: C2/C1C2 ⊆ Out D5×C221104+(D5xC22):3C2440,47
(D5×C22)⋊4C2 = C11×D20φ: C2/C1C2 ⊆ Out D5×C222202(D5xC22):4C2440,31
(D5×C22)⋊5C2 = C11×C5⋊D4φ: C2/C1C2 ⊆ Out D5×C222202(D5xC22):5C2440,33

Non-split extensions G=N.Q with N=D5×C22 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C22).1C2 = D5×Dic11φ: C2/C1C2 ⊆ Out D5×C222204-(D5xC22).1C2440,18
(D5×C22).2C2 = C2×C11⋊F5φ: C2/C1C2 ⊆ Out D5×C221104(D5xC22).2C2440,46
(D5×C22).3C2 = F5×C22φ: C2/C1C2 ⊆ Out D5×C221104(D5xC22).3C2440,45
(D5×C22).4C2 = D5×C44φ: trivial image2202(D5xC22).4C2440,30

׿
×
𝔽