Copied to
clipboard

G = C2×C11⋊F5order 440 = 23·5·11

Direct product of C2 and C11⋊F5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C11⋊F5, C22⋊F5, C1101C4, D5⋊Dic11, D10.D11, C10⋊Dic11, D5.2D22, C552(C2×C4), C5⋊(C2×Dic11), C112(C2×F5), (D5×C11)⋊2C4, (D5×C22).2C2, (D5×C11).2C22, SmallGroup(440,46)

Series: Derived Chief Lower central Upper central

C1C55 — C2×C11⋊F5
C1C11C55D5×C11C11⋊F5 — C2×C11⋊F5
C55 — C2×C11⋊F5
C1C2

Generators and relations for C2×C11⋊F5
 G = < a,b,c,d | a2=b11=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

5C2
5C2
5C22
55C4
55C4
5C22
5C22
55C2×C4
11F5
11F5
5Dic11
5C2×C22
5Dic11
11C2×F5
5C2×Dic11

Smallest permutation representation of C2×C11⋊F5
On 110 points
Generators in S110
(1 56)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 75)(21 76)(22 77)(23 78)(24 79)(25 80)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)
(1 45 34 23 12)(2 46 35 24 13)(3 47 36 25 14)(4 48 37 26 15)(5 49 38 27 16)(6 50 39 28 17)(7 51 40 29 18)(8 52 41 30 19)(9 53 42 31 20)(10 54 43 32 21)(11 55 44 33 22)(56 100 89 78 67)(57 101 90 79 68)(58 102 91 80 69)(59 103 92 81 70)(60 104 93 82 71)(61 105 94 83 72)(62 106 95 84 73)(63 107 96 85 74)(64 108 97 86 75)(65 109 98 87 76)(66 110 99 88 77)
(1 56)(2 66)(3 65)(4 64)(5 63)(6 62)(7 61)(8 60)(9 59)(10 58)(11 57)(12 78 45 89)(13 88 46 99)(14 87 47 98)(15 86 48 97)(16 85 49 96)(17 84 50 95)(18 83 51 94)(19 82 52 93)(20 81 53 92)(21 80 54 91)(22 79 55 90)(23 100 34 67)(24 110 35 77)(25 109 36 76)(26 108 37 75)(27 107 38 74)(28 106 39 73)(29 105 40 72)(30 104 41 71)(31 103 42 70)(32 102 43 69)(33 101 44 68)

G:=sub<Sym(110)| (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110), (1,45,34,23,12)(2,46,35,24,13)(3,47,36,25,14)(4,48,37,26,15)(5,49,38,27,16)(6,50,39,28,17)(7,51,40,29,18)(8,52,41,30,19)(9,53,42,31,20)(10,54,43,32,21)(11,55,44,33,22)(56,100,89,78,67)(57,101,90,79,68)(58,102,91,80,69)(59,103,92,81,70)(60,104,93,82,71)(61,105,94,83,72)(62,106,95,84,73)(63,107,96,85,74)(64,108,97,86,75)(65,109,98,87,76)(66,110,99,88,77), (1,56)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,60)(9,59)(10,58)(11,57)(12,78,45,89)(13,88,46,99)(14,87,47,98)(15,86,48,97)(16,85,49,96)(17,84,50,95)(18,83,51,94)(19,82,52,93)(20,81,53,92)(21,80,54,91)(22,79,55,90)(23,100,34,67)(24,110,35,77)(25,109,36,76)(26,108,37,75)(27,107,38,74)(28,106,39,73)(29,105,40,72)(30,104,41,71)(31,103,42,70)(32,102,43,69)(33,101,44,68)>;

G:=Group( (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110), (1,45,34,23,12)(2,46,35,24,13)(3,47,36,25,14)(4,48,37,26,15)(5,49,38,27,16)(6,50,39,28,17)(7,51,40,29,18)(8,52,41,30,19)(9,53,42,31,20)(10,54,43,32,21)(11,55,44,33,22)(56,100,89,78,67)(57,101,90,79,68)(58,102,91,80,69)(59,103,92,81,70)(60,104,93,82,71)(61,105,94,83,72)(62,106,95,84,73)(63,107,96,85,74)(64,108,97,86,75)(65,109,98,87,76)(66,110,99,88,77), (1,56)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,60)(9,59)(10,58)(11,57)(12,78,45,89)(13,88,46,99)(14,87,47,98)(15,86,48,97)(16,85,49,96)(17,84,50,95)(18,83,51,94)(19,82,52,93)(20,81,53,92)(21,80,54,91)(22,79,55,90)(23,100,34,67)(24,110,35,77)(25,109,36,76)(26,108,37,75)(27,107,38,74)(28,106,39,73)(29,105,40,72)(30,104,41,71)(31,103,42,70)(32,102,43,69)(33,101,44,68) );

G=PermutationGroup([[(1,56),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,75),(21,76),(22,77),(23,78),(24,79),(25,80),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110)], [(1,45,34,23,12),(2,46,35,24,13),(3,47,36,25,14),(4,48,37,26,15),(5,49,38,27,16),(6,50,39,28,17),(7,51,40,29,18),(8,52,41,30,19),(9,53,42,31,20),(10,54,43,32,21),(11,55,44,33,22),(56,100,89,78,67),(57,101,90,79,68),(58,102,91,80,69),(59,103,92,81,70),(60,104,93,82,71),(61,105,94,83,72),(62,106,95,84,73),(63,107,96,85,74),(64,108,97,86,75),(65,109,98,87,76),(66,110,99,88,77)], [(1,56),(2,66),(3,65),(4,64),(5,63),(6,62),(7,61),(8,60),(9,59),(10,58),(11,57),(12,78,45,89),(13,88,46,99),(14,87,47,98),(15,86,48,97),(16,85,49,96),(17,84,50,95),(18,83,51,94),(19,82,52,93),(20,81,53,92),(21,80,54,91),(22,79,55,90),(23,100,34,67),(24,110,35,77),(25,109,36,76),(26,108,37,75),(27,107,38,74),(28,106,39,73),(29,105,40,72),(30,104,41,71),(31,103,42,70),(32,102,43,69),(33,101,44,68)]])

50 conjugacy classes

class 1 2A2B2C4A4B4C4D 5  10 11A···11E22A···22E22F···22O55A···55J110A···110J
order1222444451011···1122···2222···2255···55110···110
size115555555555442···22···210···104···44···4

50 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4D11Dic11D22Dic11F5C2×F5C11⋊F5C2×C11⋊F5
kernelC2×C11⋊F5C11⋊F5D5×C22D5×C11C110D10D5D5C10C22C11C2C1
# reps121225555111010

Matrix representation of C2×C11⋊F5 in GL6(𝔽661)

66000000
06600000
001000
000100
000010
000001
,
186600000
5565200000
0021766000
001000
0000217660
000010
,
100000
010000
000010
000001
006600506370
000660291154
,
422490000
4802390000
001000
0021766000
00155291155291
00215506215506

G:=sub<GL(6,GF(661))| [660,0,0,0,0,0,0,660,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,556,0,0,0,0,660,520,0,0,0,0,0,0,217,1,0,0,0,0,660,0,0,0,0,0,0,0,217,1,0,0,0,0,660,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,660,0,0,0,0,0,0,660,0,0,1,0,506,291,0,0,0,1,370,154],[422,480,0,0,0,0,49,239,0,0,0,0,0,0,1,217,155,215,0,0,0,660,291,506,0,0,0,0,155,215,0,0,0,0,291,506] >;

C2×C11⋊F5 in GAP, Magma, Sage, TeX

C_2\times C_{11}\rtimes F_5
% in TeX

G:=Group("C2xC11:F5");
// GroupNames label

G:=SmallGroup(440,46);
// by ID

G=gap.SmallGroup(440,46);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-11,20,483,173,10004]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^11=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C2×C11⋊F5 in TeX

׿
×
𝔽