Copied to
clipboard

G = C2×D5×D11order 440 = 23·5·11

Direct product of C2, D5 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×D5×D11, C55⋊C23, C101D22, C221D10, C110⋊C22, D55⋊C22, D1105C2, (D5×C22)⋊3C2, (D5×C11)⋊C22, (C5×D11)⋊C22, C51(C22×D11), C111(C22×D5), (C10×D11)⋊3C2, SmallGroup(440,47)

Series: Derived Chief Lower central Upper central

C1C55 — C2×D5×D11
C1C11C55C5×D11D5×D11 — C2×D5×D11
C55 — C2×D5×D11
C1C2

Generators and relations for C2×D5×D11
 G = < a,b,c,d,e | a2=b5=c2=d11=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 692 in 64 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C22, C5, C23, D5, D5, C10, C10, C11, D10, D10, C2×C10, D11, D11, C22, C22, C22×D5, D22, D22, C2×C22, C55, C22×D11, D5×C11, C5×D11, D55, C110, D5×D11, C10×D11, D5×C22, D110, C2×D5×D11
Quotients: C1, C2, C22, C23, D5, D10, D11, C22×D5, D22, C22×D11, D5×D11, C2×D5×D11

Smallest permutation representation of C2×D5×D11
On 110 points
Generators in S110
(1 65)(2 66)(3 56)(4 57)(5 58)(6 59)(7 60)(8 61)(9 62)(10 63)(11 64)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 75)(21 76)(22 77)(23 78)(24 79)(25 80)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)
(1 54 43 32 21)(2 55 44 33 22)(3 45 34 23 12)(4 46 35 24 13)(5 47 36 25 14)(6 48 37 26 15)(7 49 38 27 16)(8 50 39 28 17)(9 51 40 29 18)(10 52 41 30 19)(11 53 42 31 20)(56 100 89 78 67)(57 101 90 79 68)(58 102 91 80 69)(59 103 92 81 70)(60 104 93 82 71)(61 105 94 83 72)(62 106 95 84 73)(63 107 96 85 74)(64 108 97 86 75)(65 109 98 87 76)(66 110 99 88 77)
(1 76)(2 77)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 73)(10 74)(11 75)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 100)(24 101)(25 102)(26 103)(27 104)(28 105)(29 106)(30 107)(31 108)(32 109)(33 110)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 78)(46 79)(47 80)(48 81)(49 82)(50 83)(51 84)(52 85)(53 86)(54 87)(55 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)(67 73)(68 72)(69 71)(74 77)(75 76)(78 84)(79 83)(80 82)(85 88)(86 87)(89 95)(90 94)(91 93)(96 99)(97 98)(100 106)(101 105)(102 104)(107 110)(108 109)

G:=sub<Sym(110)| (1,65)(2,66)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110), (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20)(56,100,89,78,67)(57,101,90,79,68)(58,102,91,80,69)(59,103,92,81,70)(60,104,93,82,71)(61,105,94,83,72)(62,106,95,84,73)(63,107,96,85,74)(64,108,97,86,75)(65,109,98,87,76)(66,110,99,88,77), (1,76)(2,77)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)(89,95)(90,94)(91,93)(96,99)(97,98)(100,106)(101,105)(102,104)(107,110)(108,109)>;

G:=Group( (1,65)(2,66)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110), (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20)(56,100,89,78,67)(57,101,90,79,68)(58,102,91,80,69)(59,103,92,81,70)(60,104,93,82,71)(61,105,94,83,72)(62,106,95,84,73)(63,107,96,85,74)(64,108,97,86,75)(65,109,98,87,76)(66,110,99,88,77), (1,76)(2,77)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)(89,95)(90,94)(91,93)(96,99)(97,98)(100,106)(101,105)(102,104)(107,110)(108,109) );

G=PermutationGroup([[(1,65),(2,66),(3,56),(4,57),(5,58),(6,59),(7,60),(8,61),(9,62),(10,63),(11,64),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,75),(21,76),(22,77),(23,78),(24,79),(25,80),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110)], [(1,54,43,32,21),(2,55,44,33,22),(3,45,34,23,12),(4,46,35,24,13),(5,47,36,25,14),(6,48,37,26,15),(7,49,38,27,16),(8,50,39,28,17),(9,51,40,29,18),(10,52,41,30,19),(11,53,42,31,20),(56,100,89,78,67),(57,101,90,79,68),(58,102,91,80,69),(59,103,92,81,70),(60,104,93,82,71),(61,105,94,83,72),(62,106,95,84,73),(63,107,96,85,74),(64,108,97,86,75),(65,109,98,87,76),(66,110,99,88,77)], [(1,76),(2,77),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,73),(10,74),(11,75),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,100),(24,101),(25,102),(26,103),(27,104),(28,105),(29,106),(30,107),(31,108),(32,109),(33,110),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,78),(46,79),(47,80),(48,81),(49,82),(50,83),(51,84),(52,85),(53,86),(54,87),(55,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65),(67,73),(68,72),(69,71),(74,77),(75,76),(78,84),(79,83),(80,82),(85,88),(86,87),(89,95),(90,94),(91,93),(96,99),(97,98),(100,106),(101,105),(102,104),(107,110),(108,109)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G5A5B10A10B10C10D10E10F11A···11E22A···22E22F···22O55A···55J110A···110J
order122222225510101010101011···1122···2222···2255···55110···110
size1155111155552222222222222···22···210···104···44···4

56 irreducible representations

dim1111122222244
type+++++++++++++
imageC1C2C2C2C2D5D10D10D11D22D22D5×D11C2×D5×D11
kernelC2×D5×D11D5×D11C10×D11D5×C22D110D22D11C22D10D5C10C2C1
# reps1411124251051010

Matrix representation of C2×D5×D11 in GL4(𝔽331) generated by

330000
033000
0010
0001
,
1000
0100
00115210
0017499
,
330000
033000
003300
001641
,
323100
32120800
0010
0001
,
18622400
4814500
0010
0001
G:=sub<GL(4,GF(331))| [330,0,0,0,0,330,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,115,174,0,0,210,99],[330,0,0,0,0,330,0,0,0,0,330,164,0,0,0,1],[323,321,0,0,1,208,0,0,0,0,1,0,0,0,0,1],[186,48,0,0,224,145,0,0,0,0,1,0,0,0,0,1] >;

C2×D5×D11 in GAP, Magma, Sage, TeX

C_2\times D_5\times D_{11}
% in TeX

G:=Group("C2xD5xD11");
// GroupNames label

G:=SmallGroup(440,47);
// by ID

G=gap.SmallGroup(440,47);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-11,328,10004]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^11=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽