Copied to
clipboard

G = F5×C22order 440 = 23·5·11

Direct product of C22 and F5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: F5×C22, C10⋊C44, D5⋊C44, C1102C4, D10.C22, C5⋊(C2×C44), C553(C2×C4), D5.(C2×C22), (D5×C11)⋊3C4, (D5×C22).3C2, (D5×C11).3C22, SmallGroup(440,45)

Series: Derived Chief Lower central Upper central

C1C5 — F5×C22
C1C5D5D5×C11C11×F5 — F5×C22
C5 — F5×C22
C1C22

Generators and relations for F5×C22
 G = < a,b,c | a22=b5=c4=1, ab=ba, ac=ca, cbc-1=b3 >

5C2
5C2
5C4
5C22
5C4
5C22
5C22
5C2×C4
5C44
5C44
5C2×C22
5C2×C44

Smallest permutation representation of F5×C22
On 110 points
Generators in S110
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110)
(1 81 58 90 35)(2 82 59 91 36)(3 83 60 92 37)(4 84 61 93 38)(5 85 62 94 39)(6 86 63 95 40)(7 87 64 96 41)(8 88 65 97 42)(9 67 66 98 43)(10 68 45 99 44)(11 69 46 100 23)(12 70 47 101 24)(13 71 48 102 25)(14 72 49 103 26)(15 73 50 104 27)(16 74 51 105 28)(17 75 52 106 29)(18 76 53 107 30)(19 77 54 108 31)(20 78 55 109 32)(21 79 56 110 33)(22 80 57 89 34)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(23 89 69 57)(24 90 70 58)(25 91 71 59)(26 92 72 60)(27 93 73 61)(28 94 74 62)(29 95 75 63)(30 96 76 64)(31 97 77 65)(32 98 78 66)(33 99 79 45)(34 100 80 46)(35 101 81 47)(36 102 82 48)(37 103 83 49)(38 104 84 50)(39 105 85 51)(40 106 86 52)(41 107 87 53)(42 108 88 54)(43 109 67 55)(44 110 68 56)

G:=sub<Sym(110)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110), (1,81,58,90,35)(2,82,59,91,36)(3,83,60,92,37)(4,84,61,93,38)(5,85,62,94,39)(6,86,63,95,40)(7,87,64,96,41)(8,88,65,97,42)(9,67,66,98,43)(10,68,45,99,44)(11,69,46,100,23)(12,70,47,101,24)(13,71,48,102,25)(14,72,49,103,26)(15,73,50,104,27)(16,74,51,105,28)(17,75,52,106,29)(18,76,53,107,30)(19,77,54,108,31)(20,78,55,109,32)(21,79,56,110,33)(22,80,57,89,34), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,89,69,57)(24,90,70,58)(25,91,71,59)(26,92,72,60)(27,93,73,61)(28,94,74,62)(29,95,75,63)(30,96,76,64)(31,97,77,65)(32,98,78,66)(33,99,79,45)(34,100,80,46)(35,101,81,47)(36,102,82,48)(37,103,83,49)(38,104,84,50)(39,105,85,51)(40,106,86,52)(41,107,87,53)(42,108,88,54)(43,109,67,55)(44,110,68,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110), (1,81,58,90,35)(2,82,59,91,36)(3,83,60,92,37)(4,84,61,93,38)(5,85,62,94,39)(6,86,63,95,40)(7,87,64,96,41)(8,88,65,97,42)(9,67,66,98,43)(10,68,45,99,44)(11,69,46,100,23)(12,70,47,101,24)(13,71,48,102,25)(14,72,49,103,26)(15,73,50,104,27)(16,74,51,105,28)(17,75,52,106,29)(18,76,53,107,30)(19,77,54,108,31)(20,78,55,109,32)(21,79,56,110,33)(22,80,57,89,34), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,89,69,57)(24,90,70,58)(25,91,71,59)(26,92,72,60)(27,93,73,61)(28,94,74,62)(29,95,75,63)(30,96,76,64)(31,97,77,65)(32,98,78,66)(33,99,79,45)(34,100,80,46)(35,101,81,47)(36,102,82,48)(37,103,83,49)(38,104,84,50)(39,105,85,51)(40,106,86,52)(41,107,87,53)(42,108,88,54)(43,109,67,55)(44,110,68,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)], [(1,81,58,90,35),(2,82,59,91,36),(3,83,60,92,37),(4,84,61,93,38),(5,85,62,94,39),(6,86,63,95,40),(7,87,64,96,41),(8,88,65,97,42),(9,67,66,98,43),(10,68,45,99,44),(11,69,46,100,23),(12,70,47,101,24),(13,71,48,102,25),(14,72,49,103,26),(15,73,50,104,27),(16,74,51,105,28),(17,75,52,106,29),(18,76,53,107,30),(19,77,54,108,31),(20,78,55,109,32),(21,79,56,110,33),(22,80,57,89,34)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(23,89,69,57),(24,90,70,58),(25,91,71,59),(26,92,72,60),(27,93,73,61),(28,94,74,62),(29,95,75,63),(30,96,76,64),(31,97,77,65),(32,98,78,66),(33,99,79,45),(34,100,80,46),(35,101,81,47),(36,102,82,48),(37,103,83,49),(38,104,84,50),(39,105,85,51),(40,106,86,52),(41,107,87,53),(42,108,88,54),(43,109,67,55),(44,110,68,56)]])

110 conjugacy classes

class 1 2A2B2C4A4B4C4D 5  10 11A···11J22A···22J22K···22AD44A···44AN55A···55J110A···110J
order1222444451011···1122···2222···2244···4455···55110···110
size11555555441···11···15···55···54···44···4

110 irreducible representations

dim11111111114444
type+++++
imageC1C2C2C4C4C11C22C22C44C44F5C2×F5C11×F5F5×C22
kernelF5×C22C11×F5D5×C22D5×C11C110C2×F5F5D10D5C10C22C11C2C1
# reps121221020102020111010

Matrix representation of F5×C22 in GL5(𝔽661)

6600000
081000
008100
000810
000081
,
10000
0660660660660
01000
00100
00010
,
1060000
01000
00001
00100
0660660660660

G:=sub<GL(5,GF(661))| [660,0,0,0,0,0,81,0,0,0,0,0,81,0,0,0,0,0,81,0,0,0,0,0,81],[1,0,0,0,0,0,660,1,0,0,0,660,0,1,0,0,660,0,0,1,0,660,0,0,0],[106,0,0,0,0,0,1,0,0,660,0,0,0,1,660,0,0,0,0,660,0,0,1,0,660] >;

F5×C22 in GAP, Magma, Sage, TeX

F_5\times C_{22}
% in TeX

G:=Group("F5xC22");
// GroupNames label

G:=SmallGroup(440,45);
// by ID

G=gap.SmallGroup(440,45);
# by ID

G:=PCGroup([5,-2,-2,-11,-2,-5,220,4404,219]);
// Polycyclic

G:=Group<a,b,c|a^22=b^5=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of F5×C22 in TeX

׿
×
𝔽