Extensions 1→N→G→Q→1 with N=D8 and Q=D14

Direct product G=NxQ with N=D8 and Q=D14
dρLabelID
C2xD7xD8112C2xD7xD8448,1207

Semidirect products G=N:Q with N=D8 and Q=D14
extensionφ:Q→Out NdρLabelID
D8:1D14 = D7xD16φ: D14/D7C2 ⊆ Out D81124+D8:1D14448,444
D8:2D14 = D8:D14φ: D14/D7C2 ⊆ Out D81124D8:2D14448,445
D8:3D14 = D7xC8:C22φ: D14/D7C2 ⊆ Out D8568+D8:3D14448,1225
D8:4D14 = SD16:D14φ: D14/D7C2 ⊆ Out D81128-D8:4D14448,1226
D8:5D14 = D8:5D14φ: D14/D7C2 ⊆ Out D81128+D8:5D14448,1227
D8:6D14 = D8:6D14φ: D14/D7C2 ⊆ Out D81128-D8:6D14448,1228
D8:7D14 = C2xC7:D16φ: D14/C14C2 ⊆ Out D8224D8:7D14448,680
D8:8D14 = Q16:D14φ: D14/C14C2 ⊆ Out D81124+D8:8D14448,727
D8:9D14 = C2xD8:D7φ: D14/C14C2 ⊆ Out D8112D8:9D14448,1208
D8:10D14 = D8:10D14φ: D14/C14C2 ⊆ Out D81124D8:10D14448,1221
D8:11D14 = D8:11D14φ: D14/C14C2 ⊆ Out D81124D8:11D14448,1223
D8:12D14 = C2xD8:3D7φ: trivial image224D8:12D14448,1209
D8:13D14 = D8:13D14φ: trivial image1124D8:13D14448,1210
D8:14D14 = D7xC4oD8φ: trivial image1124D8:14D14448,1220
D8:15D14 = D8:15D14φ: trivial image1124+D8:15D14448,1222

Non-split extensions G=N.Q with N=D8 and Q=D14
extensionφ:Q→Out NdρLabelID
D8.1D14 = D16:3D7φ: D14/D7C2 ⊆ Out D82244-D8.1D14448,446
D8.2D14 = D7xSD32φ: D14/D7C2 ⊆ Out D81124D8.2D14448,447
D8.3D14 = D112:C2φ: D14/D7C2 ⊆ Out D81124+D8.3D14448,448
D8.4D14 = SD32:D7φ: D14/D7C2 ⊆ Out D82244-D8.4D14448,449
D8.5D14 = SD32:3D7φ: D14/D7C2 ⊆ Out D82244D8.5D14448,450
D8.6D14 = D8.D14φ: D14/C14C2 ⊆ Out D81124D8.6D14448,681
D8.7D14 = C2xD8.D7φ: D14/C14C2 ⊆ Out D8224D8.7D14448,682
D8.8D14 = C56.30C23φ: D14/C14C2 ⊆ Out D82244D8.8D14448,728
D8.9D14 = C56.31C23φ: D14/C14C2 ⊆ Out D82244-D8.9D14448,729
D8.10D14 = D8.10D14φ: trivial image2244-D8.10D14448,1224

׿
x
:
Z
F
o
wr
Q
<