metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C16⋊3D14, D112⋊6C2, Q16⋊2D14, SD32⋊1D7, D14.7D8, D8.3D14, C112⋊3C22, D56⋊6C22, Dic7.9D8, C56.17C23, C7⋊C8.3D4, (D7×D8)⋊5C2, C4.5(D4×D7), C7⋊D16⋊3C2, C7⋊C16⋊2C22, (C4×D7).8D4, C2.20(D7×D8), C16⋊D7⋊1C2, C7⋊3(C16⋊C22), (C7×SD32)⋊1C2, C14.36(C2×D8), C28.11(C2×D4), C7⋊SD32⋊2C2, Q8.D14⋊3C2, (C7×Q16)⋊5C22, (C7×D8).3C22, (C8×D7).4C22, C8.23(C22×D7), SmallGroup(448,448)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D112⋊C2
G = < a,b,c | a112=b2=c2=1, bab=a-1, cac=a71, bc=cb >
Subgroups: 736 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2×C4, D4, Q8, C23, D7, C14, C14, C16, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, Dic7, C28, C28, D14, D14, C2×C14, M5(2), D16, SD32, SD32, C2×D8, C4○D8, C7⋊C8, C56, C4×D7, C4×D7, D28, C7⋊D4, C7×D4, C7×Q8, C22×D7, C16⋊C22, C7⋊C16, C112, C8×D7, D56, D4⋊D7, Q8⋊D7, C7×D8, C7×Q16, D4×D7, Q8⋊2D7, C16⋊D7, D112, C7⋊D16, C7⋊SD32, C7×SD32, D7×D8, Q8.D14, D112⋊C2
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C2×D8, C22×D7, C16⋊C22, D4×D7, D7×D8, D112⋊C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 91)(2 90)(3 89)(4 88)(5 87)(6 86)(7 85)(8 84)(9 83)(10 82)(11 81)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 73)(20 72)(21 71)(22 70)(23 69)(24 68)(25 67)(26 66)(27 65)(28 64)(29 63)(30 62)(31 61)(32 60)(33 59)(34 58)(35 57)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)
(1 43)(3 73)(4 32)(5 103)(6 62)(7 21)(8 92)(9 51)(11 81)(12 40)(13 111)(14 70)(15 29)(16 100)(17 59)(19 89)(20 48)(22 78)(23 37)(24 108)(25 67)(27 97)(28 56)(30 86)(31 45)(33 75)(35 105)(36 64)(38 94)(39 53)(41 83)(44 72)(46 102)(47 61)(49 91)(52 80)(54 110)(55 69)(57 99)(60 88)(63 77)(65 107)(68 96)(71 85)(76 104)(79 93)(84 112)(87 101)(95 109)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,43)(3,73)(4,32)(5,103)(6,62)(7,21)(8,92)(9,51)(11,81)(12,40)(13,111)(14,70)(15,29)(16,100)(17,59)(19,89)(20,48)(22,78)(23,37)(24,108)(25,67)(27,97)(28,56)(30,86)(31,45)(33,75)(35,105)(36,64)(38,94)(39,53)(41,83)(44,72)(46,102)(47,61)(49,91)(52,80)(54,110)(55,69)(57,99)(60,88)(63,77)(65,107)(68,96)(71,85)(76,104)(79,93)(84,112)(87,101)(95,109)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,43)(3,73)(4,32)(5,103)(6,62)(7,21)(8,92)(9,51)(11,81)(12,40)(13,111)(14,70)(15,29)(16,100)(17,59)(19,89)(20,48)(22,78)(23,37)(24,108)(25,67)(27,97)(28,56)(30,86)(31,45)(33,75)(35,105)(36,64)(38,94)(39,53)(41,83)(44,72)(46,102)(47,61)(49,91)(52,80)(54,110)(55,69)(57,99)(60,88)(63,77)(65,107)(68,96)(71,85)(76,104)(79,93)(84,112)(87,101)(95,109) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,91),(2,90),(3,89),(4,88),(5,87),(6,86),(7,85),(8,84),(9,83),(10,82),(11,81),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,73),(20,72),(21,71),(22,70),(23,69),(24,68),(25,67),(26,66),(27,65),(28,64),(29,63),(30,62),(31,61),(32,60),(33,59),(34,58),(35,57),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)], [(1,43),(3,73),(4,32),(5,103),(6,62),(7,21),(8,92),(9,51),(11,81),(12,40),(13,111),(14,70),(15,29),(16,100),(17,59),(19,89),(20,48),(22,78),(23,37),(24,108),(25,67),(27,97),(28,56),(30,86),(31,45),(33,75),(35,105),(36,64),(38,94),(39,53),(41,83),(44,72),(46,102),(47,61),(49,91),(52,80),(54,110),(55,69),(57,99),(60,88),(63,77),(65,107),(68,96),(71,85),(76,104),(79,93),(84,112),(87,101),(95,109)]])
49 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 7A | 7B | 7C | 8A | 8B | 8C | 14A | 14B | 14C | 14D | 14E | 14F | 16A | 16B | 16C | 16D | 28A | 28B | 28C | 28D | 28E | 28F | 56A | ··· | 56F | 112A | ··· | 112L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 28 | 28 | 28 | 28 | 28 | 28 | 56 | ··· | 56 | 112 | ··· | 112 |
size | 1 | 1 | 8 | 14 | 56 | 56 | 2 | 8 | 14 | 2 | 2 | 2 | 2 | 2 | 28 | 2 | 2 | 2 | 16 | 16 | 16 | 4 | 4 | 28 | 28 | 4 | 4 | 4 | 16 | 16 | 16 | 4 | ··· | 4 | 4 | ··· | 4 |
49 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | D8 | D8 | D14 | D14 | D14 | C16⋊C22 | D4×D7 | D7×D8 | D112⋊C2 |
kernel | D112⋊C2 | C16⋊D7 | D112 | C7⋊D16 | C7⋊SD32 | C7×SD32 | D7×D8 | Q8.D14 | C7⋊C8 | C4×D7 | SD32 | Dic7 | D14 | C16 | D8 | Q16 | C7 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 6 | 12 |
Matrix representation of D112⋊C2 ►in GL8(𝔽113)
76 | 84 | 37 | 29 | 0 | 0 | 0 | 0 |
76 | 0 | 37 | 0 | 0 | 0 | 0 | 0 |
76 | 84 | 76 | 84 | 0 | 0 | 0 | 0 |
76 | 0 | 76 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 0 | 0 | 111 |
0 | 0 | 0 | 0 | 100 | 102 | 1 | 1 |
0 | 0 | 0 | 0 | 8 | 74 | 11 | 10 |
0 | 0 | 0 | 0 | 30 | 82 | 0 | 88 |
0 | 0 | 25 | 89 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 88 | 0 | 0 | 0 | 0 |
25 | 89 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 88 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 62 | 62 | 0 | 0 |
0 | 0 | 0 | 0 | 82 | 51 | 0 | 0 |
0 | 0 | 0 | 0 | 73 | 27 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 86 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 62 | 62 | 0 | 0 |
0 | 0 | 0 | 0 | 82 | 51 | 0 | 0 |
0 | 0 | 0 | 0 | 98 | 27 | 0 | 112 |
0 | 0 | 0 | 0 | 41 | 108 | 112 | 0 |
G:=sub<GL(8,GF(113))| [76,76,76,76,0,0,0,0,84,0,84,0,0,0,0,0,37,37,76,76,0,0,0,0,29,0,84,0,0,0,0,0,0,0,0,0,25,100,8,30,0,0,0,0,0,102,74,82,0,0,0,0,0,1,11,0,0,0,0,0,111,1,10,88],[0,0,25,26,0,0,0,0,0,0,89,88,0,0,0,0,25,26,0,0,0,0,0,0,89,88,0,0,0,0,0,0,0,0,0,0,62,82,73,40,0,0,0,0,62,51,27,86,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,62,82,98,41,0,0,0,0,62,51,27,108,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0] >;
D112⋊C2 in GAP, Magma, Sage, TeX
D_{112}\rtimes C_2
% in TeX
G:=Group("D112:C2");
// GroupNames label
G:=SmallGroup(448,448);
// by ID
G=gap.SmallGroup(448,448);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,135,184,346,185,192,851,438,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^112=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^71,b*c=c*b>;
// generators/relations