Copied to
clipboard

G = D112⋊C2order 448 = 26·7

6th semidirect product of D112 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C163D14, D1126C2, Q162D14, SD321D7, D14.7D8, D8.3D14, C1123C22, D566C22, Dic7.9D8, C56.17C23, C7⋊C8.3D4, (D7×D8)⋊5C2, C4.5(D4×D7), C7⋊D163C2, C7⋊C162C22, (C4×D7).8D4, C2.20(D7×D8), C16⋊D71C2, C73(C16⋊C22), (C7×SD32)⋊1C2, C14.36(C2×D8), C28.11(C2×D4), C7⋊SD322C2, Q8.D143C2, (C7×Q16)⋊5C22, (C7×D8).3C22, (C8×D7).4C22, C8.23(C22×D7), SmallGroup(448,448)

Series: Derived Chief Lower central Upper central

C1C56 — D112⋊C2
C1C7C14C28C56C8×D7D7×D8 — D112⋊C2
C7C14C28C56 — D112⋊C2
C1C2C4C8SD32

Generators and relations for D112⋊C2
 G = < a,b,c | a112=b2=c2=1, bab=a-1, cac=a71, bc=cb >

Subgroups: 736 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2×C4, D4, Q8, C23, D7, C14, C14, C16, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, Dic7, C28, C28, D14, D14, C2×C14, M5(2), D16, SD32, SD32, C2×D8, C4○D8, C7⋊C8, C56, C4×D7, C4×D7, D28, C7⋊D4, C7×D4, C7×Q8, C22×D7, C16⋊C22, C7⋊C16, C112, C8×D7, D56, D4⋊D7, Q8⋊D7, C7×D8, C7×Q16, D4×D7, Q82D7, C16⋊D7, D112, C7⋊D16, C7⋊SD32, C7×SD32, D7×D8, Q8.D14, D112⋊C2
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C2×D8, C22×D7, C16⋊C22, D4×D7, D7×D8, D112⋊C2

Smallest permutation representation of D112⋊C2
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 91)(2 90)(3 89)(4 88)(5 87)(6 86)(7 85)(8 84)(9 83)(10 82)(11 81)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 73)(20 72)(21 71)(22 70)(23 69)(24 68)(25 67)(26 66)(27 65)(28 64)(29 63)(30 62)(31 61)(32 60)(33 59)(34 58)(35 57)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)
(1 43)(3 73)(4 32)(5 103)(6 62)(7 21)(8 92)(9 51)(11 81)(12 40)(13 111)(14 70)(15 29)(16 100)(17 59)(19 89)(20 48)(22 78)(23 37)(24 108)(25 67)(27 97)(28 56)(30 86)(31 45)(33 75)(35 105)(36 64)(38 94)(39 53)(41 83)(44 72)(46 102)(47 61)(49 91)(52 80)(54 110)(55 69)(57 99)(60 88)(63 77)(65 107)(68 96)(71 85)(76 104)(79 93)(84 112)(87 101)(95 109)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,43)(3,73)(4,32)(5,103)(6,62)(7,21)(8,92)(9,51)(11,81)(12,40)(13,111)(14,70)(15,29)(16,100)(17,59)(19,89)(20,48)(22,78)(23,37)(24,108)(25,67)(27,97)(28,56)(30,86)(31,45)(33,75)(35,105)(36,64)(38,94)(39,53)(41,83)(44,72)(46,102)(47,61)(49,91)(52,80)(54,110)(55,69)(57,99)(60,88)(63,77)(65,107)(68,96)(71,85)(76,104)(79,93)(84,112)(87,101)(95,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,43)(3,73)(4,32)(5,103)(6,62)(7,21)(8,92)(9,51)(11,81)(12,40)(13,111)(14,70)(15,29)(16,100)(17,59)(19,89)(20,48)(22,78)(23,37)(24,108)(25,67)(27,97)(28,56)(30,86)(31,45)(33,75)(35,105)(36,64)(38,94)(39,53)(41,83)(44,72)(46,102)(47,61)(49,91)(52,80)(54,110)(55,69)(57,99)(60,88)(63,77)(65,107)(68,96)(71,85)(76,104)(79,93)(84,112)(87,101)(95,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,91),(2,90),(3,89),(4,88),(5,87),(6,86),(7,85),(8,84),(9,83),(10,82),(11,81),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,73),(20,72),(21,71),(22,70),(23,69),(24,68),(25,67),(26,66),(27,65),(28,64),(29,63),(30,62),(31,61),(32,60),(33,59),(34,58),(35,57),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)], [(1,43),(3,73),(4,32),(5,103),(6,62),(7,21),(8,92),(9,51),(11,81),(12,40),(13,111),(14,70),(15,29),(16,100),(17,59),(19,89),(20,48),(22,78),(23,37),(24,108),(25,67),(27,97),(28,56),(30,86),(31,45),(33,75),(35,105),(36,64),(38,94),(39,53),(41,83),(44,72),(46,102),(47,61),(49,91),(52,80),(54,110),(55,69),(57,99),(60,88),(63,77),(65,107),(68,96),(71,85),(76,104),(79,93),(84,112),(87,101),(95,109)]])

49 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B8C14A14B14C14D14E14F16A16B16C16D28A28B28C28D28E28F56A···56F112A···112L
order1222224447778881414141414141616161628282828282856···56112···112
size118145656281422222282221616164428284441616164···44···4

49 irreducible representations

dim11111111222222224444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D8D8D14D14D14C16⋊C22D4×D7D7×D8D112⋊C2
kernelD112⋊C2C16⋊D7D112C7⋊D16C7⋊SD32C7×SD32D7×D8Q8.D14C7⋊C8C4×D7SD32Dic7D14C16D8Q16C7C4C2C1
# reps111111111132233323612

Matrix representation of D112⋊C2 in GL8(𝔽113)

768437290000
7603700000
768476840000
7607600000
00002500111
000010010211
00008741110
00003082088
,
0025890000
0026880000
2589000000
2688000000
0000626200
0000825100
0000732701
0000408610
,
00100000
00010000
10000000
01000000
0000626200
0000825100
000098270112
0000411081120

G:=sub<GL(8,GF(113))| [76,76,76,76,0,0,0,0,84,0,84,0,0,0,0,0,37,37,76,76,0,0,0,0,29,0,84,0,0,0,0,0,0,0,0,0,25,100,8,30,0,0,0,0,0,102,74,82,0,0,0,0,0,1,11,0,0,0,0,0,111,1,10,88],[0,0,25,26,0,0,0,0,0,0,89,88,0,0,0,0,25,26,0,0,0,0,0,0,89,88,0,0,0,0,0,0,0,0,0,0,62,82,73,40,0,0,0,0,62,51,27,86,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,62,82,98,41,0,0,0,0,62,51,27,108,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0] >;

D112⋊C2 in GAP, Magma, Sage, TeX

D_{112}\rtimes C_2
% in TeX

G:=Group("D112:C2");
// GroupNames label

G:=SmallGroup(448,448);
// by ID

G=gap.SmallGroup(448,448);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,135,184,346,185,192,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^112=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^71,b*c=c*b>;
// generators/relations

׿
×
𝔽