extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C4×Dic7) = C28.C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C4 | 448 | | C4.1(C4xDic7) | 448,86 |
C4.2(C4×Dic7) = C28.2C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C4 | 112 | | C4.2(C4xDic7) | 448,89 |
C4.3(C4×Dic7) = C28.3C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C4 | 112 | | C4.3(C4xDic7) | 448,112 |
C4.4(C4×Dic7) = C28.4C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C4 | 224 | | C4.4(C4xDic7) | 448,115 |
C4.5(C4×Dic7) = C28.5C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C4 | 224 | | C4.5(C4xDic7) | 448,531 |
C4.6(C4×Dic7) = M4(2)×Dic7 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C4 | 224 | | C4.6(C4xDic7) | 448,651 |
C4.7(C4×Dic7) = C28.7C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C4 | 224 | | C4.7(C4xDic7) | 448,656 |
C4.8(C4×Dic7) = C28.8C42 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C4 | 112 | | C4.8(C4xDic7) | 448,80 |
C4.9(C4×Dic7) = C28.9C42 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C4 | 448 | | C4.9(C4xDic7) | 448,108 |
C4.10(C4×Dic7) = C28.10C42 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C4 | 224 | | C4.10(C4xDic7) | 448,109 |
C4.11(C4×Dic7) = C4×C4.Dic7 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C4 | 224 | | C4.11(C4xDic7) | 448,456 |
C4.12(C4×Dic7) = C28.12C42 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C4 | 224 | | C4.12(C4xDic7) | 448,635 |
C4.13(C4×Dic7) = C4×C7⋊C16 | central extension (φ=1) | 448 | | C4.13(C4xDic7) | 448,17 |
C4.14(C4×Dic7) = C56.C8 | central extension (φ=1) | 448 | | C4.14(C4xDic7) | 448,18 |
C4.15(C4×Dic7) = C16×Dic7 | central extension (φ=1) | 448 | | C4.15(C4xDic7) | 448,57 |
C4.16(C4×Dic7) = C112⋊9C4 | central extension (φ=1) | 448 | | C4.16(C4xDic7) | 448,59 |
C4.17(C4×Dic7) = C2×C4×C7⋊C8 | central extension (φ=1) | 448 | | C4.17(C4xDic7) | 448,454 |
C4.18(C4×Dic7) = C2×C42.D7 | central extension (φ=1) | 448 | | C4.18(C4xDic7) | 448,455 |
C4.19(C4×Dic7) = C42⋊4Dic7 | central extension (φ=1) | 448 | | C4.19(C4xDic7) | 448,466 |
C4.20(C4×Dic7) = C2×C8×Dic7 | central extension (φ=1) | 448 | | C4.20(C4xDic7) | 448,632 |
C4.21(C4×Dic7) = C2×C56⋊C4 | central extension (φ=1) | 448 | | C4.21(C4xDic7) | 448,634 |
C4.22(C4×Dic7) = C28.15C42 | central stem extension (φ=1) | 112 | 4 | C4.22(C4xDic7) | 448,23 |
C4.23(C4×Dic7) = C112⋊C4 | central stem extension (φ=1) | 112 | 4 | C4.23(C4xDic7) | 448,69 |
C4.24(C4×Dic7) = C42⋊Dic7 | central stem extension (φ=1) | 112 | 4 | C4.24(C4xDic7) | 448,88 |
C4.25(C4×Dic7) = C23.9D28 | central stem extension (φ=1) | 112 | 4 | C4.25(C4xDic7) | 448,114 |
C4.26(C4×Dic7) = C28.21C42 | central stem extension (φ=1) | 112 | 4 | C4.26(C4xDic7) | 448,117 |