# Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C28

Direct product G=N×Q with N=C2×D4 and Q=C28
dρLabelID
D4×C2×C28224D4xC2xC28448,1298

Semidirect products G=N:Q with N=C2×D4 and Q=C28
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1C28 = C7×C22.SD16φ: C28/C7C4 ⊆ Out C2×D4112(C2xD4):1C28448,131
(C2×D4)⋊2C28 = C7×C42⋊C4φ: C28/C7C4 ⊆ Out C2×D4564(C2xD4):2C28448,157
(C2×D4)⋊3C28 = C7×C23.23D4φ: C28/C14C2 ⊆ Out C2×D4224(C2xD4):3C28448,794
(C2×D4)⋊4C28 = C7×C24.3C22φ: C28/C14C2 ⊆ Out C2×D4224(C2xD4):4C28448,798
(C2×D4)⋊5C28 = C14×C23⋊C4φ: C28/C14C2 ⊆ Out C2×D4112(C2xD4):5C28448,817
(C2×D4)⋊6C28 = C7×C23.C23φ: C28/C14C2 ⊆ Out C2×D41124(C2xD4):6C28448,818
(C2×D4)⋊7C28 = C14×D4⋊C4φ: C28/C14C2 ⊆ Out C2×D4224(C2xD4):7C28448,822
(C2×D4)⋊8C28 = C7×C23.37D4φ: C28/C14C2 ⊆ Out C2×D4112(C2xD4):8C28448,826
(C2×D4)⋊9C28 = C14×C4≀C2φ: C28/C14C2 ⊆ Out C2×D4112(C2xD4):9C28448,828
(C2×D4)⋊10C28 = C7×C42⋊C22φ: C28/C14C2 ⊆ Out C2×D41124(C2xD4):10C28448,829
(C2×D4)⋊11C28 = C7×C22.11C24φ: C28/C14C2 ⊆ Out C2×D4112(C2xD4):11C28448,1301

Non-split extensions G=N.Q with N=C2×D4 and Q=C28
extensionφ:Q→Out NdρLabelID
(C2×D4).1C28 = C7×C42.C22φ: C28/C7C4 ⊆ Out C2×D4224(C2xD4).1C28448,133
(C2×D4).2C28 = C7×C4.D8φ: C28/C7C4 ⊆ Out C2×D4224(C2xD4).2C28448,135
(C2×D4).3C28 = C7×C42.C4φ: C28/C7C4 ⊆ Out C2×D41124(C2xD4).3C28448,159
(C2×D4).4C28 = C7×D4⋊C8φ: C28/C14C2 ⊆ Out C2×D4224(C2xD4).4C28448,129
(C2×D4).5C28 = C7×(C22×C8)⋊C2φ: C28/C14C2 ⊆ Out C2×D4224(C2xD4).5C28448,816
(C2×D4).6C28 = C14×C4.D4φ: C28/C14C2 ⊆ Out C2×D4112(C2xD4).6C28448,819
(C2×D4).7C28 = C7×M4(2).8C22φ: C28/C14C2 ⊆ Out C2×D41124(C2xD4).7C28448,821
(C2×D4).8C28 = C7×C89D4φ: C28/C14C2 ⊆ Out C2×D4224(C2xD4).8C28448,843
(C2×D4).9C28 = C7×C86D4φ: C28/C14C2 ⊆ Out C2×D4224(C2xD4).9C28448,844
(C2×D4).10C28 = C7×Q8○M4(2)φ: C28/C14C2 ⊆ Out C2×D41124(C2xD4).10C28448,1351
(C2×D4).11C28 = D4×C56φ: trivial image224(C2xD4).11C28448,842
(C2×D4).12C28 = C14×C8○D4φ: trivial image224(C2xD4).12C28448,1350

׿
×
𝔽