Copied to
clipboard

G = C14×C4.D4order 448 = 26·7

Direct product of C14 and C4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C14×C4.D4, C24.3C28, (C2×D4).6C28, C4.48(D4×C14), (D4×C14).18C4, C28.455(C2×D4), (C2×C28).515D4, C23.4(C2×C28), (C23×C14).2C4, M4(2)⋊8(C2×C14), (C2×M4(2))⋊8C14, (C22×D4).5C14, C28.78(C22⋊C4), (C14×M4(2))⋊26C2, (C2×C28).606C23, C22.8(C22×C28), (D4×C14).284C22, (C7×M4(2))⋊37C22, (C22×C28).407C22, (D4×C2×C14).17C2, (C2×C4).21(C7×D4), (C2×C4).19(C2×C28), C4.10(C7×C22⋊C4), (C2×C28).192(C2×C4), (C2×D4).42(C2×C14), C2.14(C14×C22⋊C4), (C2×C4).1(C22×C14), C14.102(C2×C22⋊C4), (C22×C14).11(C2×C4), (C22×C4).26(C2×C14), C22.18(C7×C22⋊C4), (C2×C14).161(C22×C4), (C2×C14).136(C22⋊C4), SmallGroup(448,819)

Series: Derived Chief Lower central Upper central

C1C22 — C14×C4.D4
C1C2C4C2×C4C2×C28C7×M4(2)C7×C4.D4 — C14×C4.D4
C1C2C22 — C14×C4.D4
C1C2×C14C22×C28 — C14×C4.D4

Generators and relations for C14×C4.D4
 G = < a,b,c,d | a14=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

Subgroups: 370 in 186 conjugacy classes, 82 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, C23, C14, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×D4, C24, C28, C2×C14, C2×C14, C4.D4, C2×M4(2), C22×D4, C56, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C2×C4.D4, C2×C56, C7×M4(2), C7×M4(2), C22×C28, D4×C14, D4×C14, C23×C14, C7×C4.D4, C14×M4(2), D4×C2×C14, C14×C4.D4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C23, C14, C22⋊C4, C22×C4, C2×D4, C28, C2×C14, C4.D4, C2×C22⋊C4, C2×C28, C7×D4, C22×C14, C2×C4.D4, C7×C22⋊C4, C22×C28, D4×C14, C7×C4.D4, C14×C22⋊C4, C14×C4.D4

Smallest permutation representation of C14×C4.D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 40 78 86)(2 41 79 87)(3 42 80 88)(4 29 81 89)(5 30 82 90)(6 31 83 91)(7 32 84 92)(8 33 71 93)(9 34 72 94)(10 35 73 95)(11 36 74 96)(12 37 75 97)(13 38 76 98)(14 39 77 85)(15 63 44 107)(16 64 45 108)(17 65 46 109)(18 66 47 110)(19 67 48 111)(20 68 49 112)(21 69 50 99)(22 70 51 100)(23 57 52 101)(24 58 53 102)(25 59 54 103)(26 60 55 104)(27 61 56 105)(28 62 43 106)
(1 53 93 109 78 24 33 65)(2 54 94 110 79 25 34 66)(3 55 95 111 80 26 35 67)(4 56 96 112 81 27 36 68)(5 43 97 99 82 28 37 69)(6 44 98 100 83 15 38 70)(7 45 85 101 84 16 39 57)(8 46 86 102 71 17 40 58)(9 47 87 103 72 18 41 59)(10 48 88 104 73 19 42 60)(11 49 89 105 74 20 29 61)(12 50 90 106 75 21 30 62)(13 51 91 107 76 22 31 63)(14 52 92 108 77 23 32 64)
(1 24 40 58 78 53 86 102)(2 25 41 59 79 54 87 103)(3 26 42 60 80 55 88 104)(4 27 29 61 81 56 89 105)(5 28 30 62 82 43 90 106)(6 15 31 63 83 44 91 107)(7 16 32 64 84 45 92 108)(8 17 33 65 71 46 93 109)(9 18 34 66 72 47 94 110)(10 19 35 67 73 48 95 111)(11 20 36 68 74 49 96 112)(12 21 37 69 75 50 97 99)(13 22 38 70 76 51 98 100)(14 23 39 57 77 52 85 101)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,40,78,86)(2,41,79,87)(3,42,80,88)(4,29,81,89)(5,30,82,90)(6,31,83,91)(7,32,84,92)(8,33,71,93)(9,34,72,94)(10,35,73,95)(11,36,74,96)(12,37,75,97)(13,38,76,98)(14,39,77,85)(15,63,44,107)(16,64,45,108)(17,65,46,109)(18,66,47,110)(19,67,48,111)(20,68,49,112)(21,69,50,99)(22,70,51,100)(23,57,52,101)(24,58,53,102)(25,59,54,103)(26,60,55,104)(27,61,56,105)(28,62,43,106), (1,53,93,109,78,24,33,65)(2,54,94,110,79,25,34,66)(3,55,95,111,80,26,35,67)(4,56,96,112,81,27,36,68)(5,43,97,99,82,28,37,69)(6,44,98,100,83,15,38,70)(7,45,85,101,84,16,39,57)(8,46,86,102,71,17,40,58)(9,47,87,103,72,18,41,59)(10,48,88,104,73,19,42,60)(11,49,89,105,74,20,29,61)(12,50,90,106,75,21,30,62)(13,51,91,107,76,22,31,63)(14,52,92,108,77,23,32,64), (1,24,40,58,78,53,86,102)(2,25,41,59,79,54,87,103)(3,26,42,60,80,55,88,104)(4,27,29,61,81,56,89,105)(5,28,30,62,82,43,90,106)(6,15,31,63,83,44,91,107)(7,16,32,64,84,45,92,108)(8,17,33,65,71,46,93,109)(9,18,34,66,72,47,94,110)(10,19,35,67,73,48,95,111)(11,20,36,68,74,49,96,112)(12,21,37,69,75,50,97,99)(13,22,38,70,76,51,98,100)(14,23,39,57,77,52,85,101)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,40,78,86)(2,41,79,87)(3,42,80,88)(4,29,81,89)(5,30,82,90)(6,31,83,91)(7,32,84,92)(8,33,71,93)(9,34,72,94)(10,35,73,95)(11,36,74,96)(12,37,75,97)(13,38,76,98)(14,39,77,85)(15,63,44,107)(16,64,45,108)(17,65,46,109)(18,66,47,110)(19,67,48,111)(20,68,49,112)(21,69,50,99)(22,70,51,100)(23,57,52,101)(24,58,53,102)(25,59,54,103)(26,60,55,104)(27,61,56,105)(28,62,43,106), (1,53,93,109,78,24,33,65)(2,54,94,110,79,25,34,66)(3,55,95,111,80,26,35,67)(4,56,96,112,81,27,36,68)(5,43,97,99,82,28,37,69)(6,44,98,100,83,15,38,70)(7,45,85,101,84,16,39,57)(8,46,86,102,71,17,40,58)(9,47,87,103,72,18,41,59)(10,48,88,104,73,19,42,60)(11,49,89,105,74,20,29,61)(12,50,90,106,75,21,30,62)(13,51,91,107,76,22,31,63)(14,52,92,108,77,23,32,64), (1,24,40,58,78,53,86,102)(2,25,41,59,79,54,87,103)(3,26,42,60,80,55,88,104)(4,27,29,61,81,56,89,105)(5,28,30,62,82,43,90,106)(6,15,31,63,83,44,91,107)(7,16,32,64,84,45,92,108)(8,17,33,65,71,46,93,109)(9,18,34,66,72,47,94,110)(10,19,35,67,73,48,95,111)(11,20,36,68,74,49,96,112)(12,21,37,69,75,50,97,99)(13,22,38,70,76,51,98,100)(14,23,39,57,77,52,85,101) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,40,78,86),(2,41,79,87),(3,42,80,88),(4,29,81,89),(5,30,82,90),(6,31,83,91),(7,32,84,92),(8,33,71,93),(9,34,72,94),(10,35,73,95),(11,36,74,96),(12,37,75,97),(13,38,76,98),(14,39,77,85),(15,63,44,107),(16,64,45,108),(17,65,46,109),(18,66,47,110),(19,67,48,111),(20,68,49,112),(21,69,50,99),(22,70,51,100),(23,57,52,101),(24,58,53,102),(25,59,54,103),(26,60,55,104),(27,61,56,105),(28,62,43,106)], [(1,53,93,109,78,24,33,65),(2,54,94,110,79,25,34,66),(3,55,95,111,80,26,35,67),(4,56,96,112,81,27,36,68),(5,43,97,99,82,28,37,69),(6,44,98,100,83,15,38,70),(7,45,85,101,84,16,39,57),(8,46,86,102,71,17,40,58),(9,47,87,103,72,18,41,59),(10,48,88,104,73,19,42,60),(11,49,89,105,74,20,29,61),(12,50,90,106,75,21,30,62),(13,51,91,107,76,22,31,63),(14,52,92,108,77,23,32,64)], [(1,24,40,58,78,53,86,102),(2,25,41,59,79,54,87,103),(3,26,42,60,80,55,88,104),(4,27,29,61,81,56,89,105),(5,28,30,62,82,43,90,106),(6,15,31,63,83,44,91,107),(7,16,32,64,84,45,92,108),(8,17,33,65,71,46,93,109),(9,18,34,66,72,47,94,110),(10,19,35,67,73,48,95,111),(11,20,36,68,74,49,96,112),(12,21,37,69,75,50,97,99),(13,22,38,70,76,51,98,100),(14,23,39,57,77,52,85,101)]])

154 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D7A···7F8A···8H14A···14R14S···14AD14AE···14BB28A···28X56A···56AV
order122222222244447···78···814···1414···1414···1428···2856···56
size111122444422221···14···41···12···24···42···24···4

154 irreducible representations

dim1111111111112244
type++++++
imageC1C2C2C2C4C4C7C14C14C14C28C28D4C7×D4C4.D4C7×C4.D4
kernelC14×C4.D4C7×C4.D4C14×M4(2)D4×C2×C14D4×C14C23×C14C2×C4.D4C4.D4C2×M4(2)C22×D4C2×D4C24C2×C28C2×C4C14C2
# reps1421446241262424424212

Matrix representation of C14×C4.D4 in GL6(𝔽113)

11200000
01120000
0085000
0008500
0000850
0000085
,
11200000
01120000
000100
00112000
000001
00001120
,
641110000
70490000
000010
00000112
000100
001000
,
4920000
42640000
000010
000001
000100
00112000

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,85,0,0,0,0,0,0,85,0,0,0,0,0,0,85,0,0,0,0,0,0,85],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0],[64,70,0,0,0,0,111,49,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,112,0,0],[49,42,0,0,0,0,2,64,0,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

C14×C4.D4 in GAP, Magma, Sage, TeX

C_{14}\times C_4.D_4
% in TeX

G:=Group("C14xC4.D4");
// GroupNames label

G:=SmallGroup(448,819);
// by ID

G=gap.SmallGroup(448,819);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,784,813,9804,7068,124]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
×
𝔽