Copied to
clipboard

G = D4×C2×C28order 448 = 26·7

Direct product of C2×C28 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C2×C28, C287(C22×C4), (C23×C28)⋊6C2, C235(C2×C28), (C2×C42)⋊7C14, (C23×C4)⋊5C14, C41(C22×C28), C4216(C2×C14), (C4×C28)⋊57C22, C2.4(C23×C28), C24.33(C2×C14), C14.56(C23×C4), C221(C22×C28), C22.59(D4×C14), (C2×C28).707C23, (C2×C14).335C24, (C22×C28)⋊58C22, (C22×D4).13C14, C14.179(C22×D4), C22.8(C23×C14), (D4×C14).330C22, C23.28(C22×C14), (C23×C14).90C22, (C22×C14).252C23, (C2×C4×C28)⋊20C2, C2.3(D4×C2×C14), (C2×C4)⋊7(C2×C28), (C14×C4⋊C4)⋊52C2, (C2×C4⋊C4)⋊25C14, C4⋊C419(C2×C14), (C2×C28)⋊32(C2×C4), (D4×C2×C14).26C2, C2.2(C14×C4○D4), (C7×C4⋊C4)⋊76C22, (C2×C14)⋊5(C22×C4), C22⋊C417(C2×C14), (C14×C22⋊C4)⋊36C2, (C2×C22⋊C4)⋊16C14, (C22×C14)⋊13(C2×C4), (C22×C4)⋊16(C2×C14), (C2×D4).76(C2×C14), C14.221(C2×C4○D4), (C2×C14).681(C2×D4), C22.27(C7×C4○D4), (C7×C22⋊C4)⋊71C22, (C2×C4).54(C22×C14), (C2×C14).227(C4○D4), SmallGroup(448,1298)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C2×C28
C1C2C22C2×C14C2×C28C7×C22⋊C4D4×C28 — D4×C2×C28
C1C2 — D4×C2×C28
C1C22×C28 — D4×C2×C28

Generators and relations for D4×C2×C28
 G = < a,b,c,d | a2=b28=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 578 in 426 conjugacy classes, 274 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C28, C28, C2×C14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C22×D4, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C2×C4×D4, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C22×C28, C22×C28, C22×C28, D4×C14, C23×C14, C2×C4×C28, C14×C22⋊C4, C14×C4⋊C4, D4×C28, C23×C28, D4×C2×C14, D4×C2×C28
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C23, C14, C22×C4, C2×D4, C4○D4, C24, C28, C2×C14, C4×D4, C23×C4, C22×D4, C2×C4○D4, C2×C28, C7×D4, C22×C14, C2×C4×D4, C22×C28, D4×C14, C7×C4○D4, C23×C14, D4×C28, C23×C28, D4×C2×C14, C14×C4○D4, D4×C2×C28

Smallest permutation representation of D4×C2×C28
On 224 points
Generators in S224
(1 131)(2 132)(3 133)(4 134)(5 135)(6 136)(7 137)(8 138)(9 139)(10 140)(11 113)(12 114)(13 115)(14 116)(15 117)(16 118)(17 119)(18 120)(19 121)(20 122)(21 123)(22 124)(23 125)(24 126)(25 127)(26 128)(27 129)(28 130)(29 202)(30 203)(31 204)(32 205)(33 206)(34 207)(35 208)(36 209)(37 210)(38 211)(39 212)(40 213)(41 214)(42 215)(43 216)(44 217)(45 218)(46 219)(47 220)(48 221)(49 222)(50 223)(51 224)(52 197)(53 198)(54 199)(55 200)(56 201)(57 155)(58 156)(59 157)(60 158)(61 159)(62 160)(63 161)(64 162)(65 163)(66 164)(67 165)(68 166)(69 167)(70 168)(71 141)(72 142)(73 143)(74 144)(75 145)(76 146)(77 147)(78 148)(79 149)(80 150)(81 151)(82 152)(83 153)(84 154)(85 177)(86 178)(87 179)(88 180)(89 181)(90 182)(91 183)(92 184)(93 185)(94 186)(95 187)(96 188)(97 189)(98 190)(99 191)(100 192)(101 193)(102 194)(103 195)(104 196)(105 169)(106 170)(107 171)(108 172)(109 173)(110 174)(111 175)(112 176)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 218 66 175)(2 219 67 176)(3 220 68 177)(4 221 69 178)(5 222 70 179)(6 223 71 180)(7 224 72 181)(8 197 73 182)(9 198 74 183)(10 199 75 184)(11 200 76 185)(12 201 77 186)(13 202 78 187)(14 203 79 188)(15 204 80 189)(16 205 81 190)(17 206 82 191)(18 207 83 192)(19 208 84 193)(20 209 57 194)(21 210 58 195)(22 211 59 196)(23 212 60 169)(24 213 61 170)(25 214 62 171)(26 215 63 172)(27 216 64 173)(28 217 65 174)(29 148 95 115)(30 149 96 116)(31 150 97 117)(32 151 98 118)(33 152 99 119)(34 153 100 120)(35 154 101 121)(36 155 102 122)(37 156 103 123)(38 157 104 124)(39 158 105 125)(40 159 106 126)(41 160 107 127)(42 161 108 128)(43 162 109 129)(44 163 110 130)(45 164 111 131)(46 165 112 132)(47 166 85 133)(48 167 86 134)(49 168 87 135)(50 141 88 136)(51 142 89 137)(52 143 90 138)(53 144 91 139)(54 145 92 140)(55 146 93 113)(56 147 94 114)
(1 150)(2 151)(3 152)(4 153)(5 154)(6 155)(7 156)(8 157)(9 158)(10 159)(11 160)(12 161)(13 162)(14 163)(15 164)(16 165)(17 166)(18 167)(19 168)(20 141)(21 142)(22 143)(23 144)(24 145)(25 146)(26 147)(27 148)(28 149)(29 216)(30 217)(31 218)(32 219)(33 220)(34 221)(35 222)(36 223)(37 224)(38 197)(39 198)(40 199)(41 200)(42 201)(43 202)(44 203)(45 204)(46 205)(47 206)(48 207)(49 208)(50 209)(51 210)(52 211)(53 212)(54 213)(55 214)(56 215)(57 136)(58 137)(59 138)(60 139)(61 140)(62 113)(63 114)(64 115)(65 116)(66 117)(67 118)(68 119)(69 120)(70 121)(71 122)(72 123)(73 124)(74 125)(75 126)(76 127)(77 128)(78 129)(79 130)(80 131)(81 132)(82 133)(83 134)(84 135)(85 191)(86 192)(87 193)(88 194)(89 195)(90 196)(91 169)(92 170)(93 171)(94 172)(95 173)(96 174)(97 175)(98 176)(99 177)(100 178)(101 179)(102 180)(103 181)(104 182)(105 183)(106 184)(107 185)(108 186)(109 187)(110 188)(111 189)(112 190)

G:=sub<Sym(224)| (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,120)(19,121)(20,122)(21,123)(22,124)(23,125)(24,126)(25,127)(26,128)(27,129)(28,130)(29,202)(30,203)(31,204)(32,205)(33,206)(34,207)(35,208)(36,209)(37,210)(38,211)(39,212)(40,213)(41,214)(42,215)(43,216)(44,217)(45,218)(46,219)(47,220)(48,221)(49,222)(50,223)(51,224)(52,197)(53,198)(54,199)(55,200)(56,201)(57,155)(58,156)(59,157)(60,158)(61,159)(62,160)(63,161)(64,162)(65,163)(66,164)(67,165)(68,166)(69,167)(70,168)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192)(101,193)(102,194)(103,195)(104,196)(105,169)(106,170)(107,171)(108,172)(109,173)(110,174)(111,175)(112,176), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,218,66,175)(2,219,67,176)(3,220,68,177)(4,221,69,178)(5,222,70,179)(6,223,71,180)(7,224,72,181)(8,197,73,182)(9,198,74,183)(10,199,75,184)(11,200,76,185)(12,201,77,186)(13,202,78,187)(14,203,79,188)(15,204,80,189)(16,205,81,190)(17,206,82,191)(18,207,83,192)(19,208,84,193)(20,209,57,194)(21,210,58,195)(22,211,59,196)(23,212,60,169)(24,213,61,170)(25,214,62,171)(26,215,63,172)(27,216,64,173)(28,217,65,174)(29,148,95,115)(30,149,96,116)(31,150,97,117)(32,151,98,118)(33,152,99,119)(34,153,100,120)(35,154,101,121)(36,155,102,122)(37,156,103,123)(38,157,104,124)(39,158,105,125)(40,159,106,126)(41,160,107,127)(42,161,108,128)(43,162,109,129)(44,163,110,130)(45,164,111,131)(46,165,112,132)(47,166,85,133)(48,167,86,134)(49,168,87,135)(50,141,88,136)(51,142,89,137)(52,143,90,138)(53,144,91,139)(54,145,92,140)(55,146,93,113)(56,147,94,114), (1,150)(2,151)(3,152)(4,153)(5,154)(6,155)(7,156)(8,157)(9,158)(10,159)(11,160)(12,161)(13,162)(14,163)(15,164)(16,165)(17,166)(18,167)(19,168)(20,141)(21,142)(22,143)(23,144)(24,145)(25,146)(26,147)(27,148)(28,149)(29,216)(30,217)(31,218)(32,219)(33,220)(34,221)(35,222)(36,223)(37,224)(38,197)(39,198)(40,199)(41,200)(42,201)(43,202)(44,203)(45,204)(46,205)(47,206)(48,207)(49,208)(50,209)(51,210)(52,211)(53,212)(54,213)(55,214)(56,215)(57,136)(58,137)(59,138)(60,139)(61,140)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,191)(86,192)(87,193)(88,194)(89,195)(90,196)(91,169)(92,170)(93,171)(94,172)(95,173)(96,174)(97,175)(98,176)(99,177)(100,178)(101,179)(102,180)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190)>;

G:=Group( (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,120)(19,121)(20,122)(21,123)(22,124)(23,125)(24,126)(25,127)(26,128)(27,129)(28,130)(29,202)(30,203)(31,204)(32,205)(33,206)(34,207)(35,208)(36,209)(37,210)(38,211)(39,212)(40,213)(41,214)(42,215)(43,216)(44,217)(45,218)(46,219)(47,220)(48,221)(49,222)(50,223)(51,224)(52,197)(53,198)(54,199)(55,200)(56,201)(57,155)(58,156)(59,157)(60,158)(61,159)(62,160)(63,161)(64,162)(65,163)(66,164)(67,165)(68,166)(69,167)(70,168)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192)(101,193)(102,194)(103,195)(104,196)(105,169)(106,170)(107,171)(108,172)(109,173)(110,174)(111,175)(112,176), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,218,66,175)(2,219,67,176)(3,220,68,177)(4,221,69,178)(5,222,70,179)(6,223,71,180)(7,224,72,181)(8,197,73,182)(9,198,74,183)(10,199,75,184)(11,200,76,185)(12,201,77,186)(13,202,78,187)(14,203,79,188)(15,204,80,189)(16,205,81,190)(17,206,82,191)(18,207,83,192)(19,208,84,193)(20,209,57,194)(21,210,58,195)(22,211,59,196)(23,212,60,169)(24,213,61,170)(25,214,62,171)(26,215,63,172)(27,216,64,173)(28,217,65,174)(29,148,95,115)(30,149,96,116)(31,150,97,117)(32,151,98,118)(33,152,99,119)(34,153,100,120)(35,154,101,121)(36,155,102,122)(37,156,103,123)(38,157,104,124)(39,158,105,125)(40,159,106,126)(41,160,107,127)(42,161,108,128)(43,162,109,129)(44,163,110,130)(45,164,111,131)(46,165,112,132)(47,166,85,133)(48,167,86,134)(49,168,87,135)(50,141,88,136)(51,142,89,137)(52,143,90,138)(53,144,91,139)(54,145,92,140)(55,146,93,113)(56,147,94,114), (1,150)(2,151)(3,152)(4,153)(5,154)(6,155)(7,156)(8,157)(9,158)(10,159)(11,160)(12,161)(13,162)(14,163)(15,164)(16,165)(17,166)(18,167)(19,168)(20,141)(21,142)(22,143)(23,144)(24,145)(25,146)(26,147)(27,148)(28,149)(29,216)(30,217)(31,218)(32,219)(33,220)(34,221)(35,222)(36,223)(37,224)(38,197)(39,198)(40,199)(41,200)(42,201)(43,202)(44,203)(45,204)(46,205)(47,206)(48,207)(49,208)(50,209)(51,210)(52,211)(53,212)(54,213)(55,214)(56,215)(57,136)(58,137)(59,138)(60,139)(61,140)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,191)(86,192)(87,193)(88,194)(89,195)(90,196)(91,169)(92,170)(93,171)(94,172)(95,173)(96,174)(97,175)(98,176)(99,177)(100,178)(101,179)(102,180)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190) );

G=PermutationGroup([[(1,131),(2,132),(3,133),(4,134),(5,135),(6,136),(7,137),(8,138),(9,139),(10,140),(11,113),(12,114),(13,115),(14,116),(15,117),(16,118),(17,119),(18,120),(19,121),(20,122),(21,123),(22,124),(23,125),(24,126),(25,127),(26,128),(27,129),(28,130),(29,202),(30,203),(31,204),(32,205),(33,206),(34,207),(35,208),(36,209),(37,210),(38,211),(39,212),(40,213),(41,214),(42,215),(43,216),(44,217),(45,218),(46,219),(47,220),(48,221),(49,222),(50,223),(51,224),(52,197),(53,198),(54,199),(55,200),(56,201),(57,155),(58,156),(59,157),(60,158),(61,159),(62,160),(63,161),(64,162),(65,163),(66,164),(67,165),(68,166),(69,167),(70,168),(71,141),(72,142),(73,143),(74,144),(75,145),(76,146),(77,147),(78,148),(79,149),(80,150),(81,151),(82,152),(83,153),(84,154),(85,177),(86,178),(87,179),(88,180),(89,181),(90,182),(91,183),(92,184),(93,185),(94,186),(95,187),(96,188),(97,189),(98,190),(99,191),(100,192),(101,193),(102,194),(103,195),(104,196),(105,169),(106,170),(107,171),(108,172),(109,173),(110,174),(111,175),(112,176)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,218,66,175),(2,219,67,176),(3,220,68,177),(4,221,69,178),(5,222,70,179),(6,223,71,180),(7,224,72,181),(8,197,73,182),(9,198,74,183),(10,199,75,184),(11,200,76,185),(12,201,77,186),(13,202,78,187),(14,203,79,188),(15,204,80,189),(16,205,81,190),(17,206,82,191),(18,207,83,192),(19,208,84,193),(20,209,57,194),(21,210,58,195),(22,211,59,196),(23,212,60,169),(24,213,61,170),(25,214,62,171),(26,215,63,172),(27,216,64,173),(28,217,65,174),(29,148,95,115),(30,149,96,116),(31,150,97,117),(32,151,98,118),(33,152,99,119),(34,153,100,120),(35,154,101,121),(36,155,102,122),(37,156,103,123),(38,157,104,124),(39,158,105,125),(40,159,106,126),(41,160,107,127),(42,161,108,128),(43,162,109,129),(44,163,110,130),(45,164,111,131),(46,165,112,132),(47,166,85,133),(48,167,86,134),(49,168,87,135),(50,141,88,136),(51,142,89,137),(52,143,90,138),(53,144,91,139),(54,145,92,140),(55,146,93,113),(56,147,94,114)], [(1,150),(2,151),(3,152),(4,153),(5,154),(6,155),(7,156),(8,157),(9,158),(10,159),(11,160),(12,161),(13,162),(14,163),(15,164),(16,165),(17,166),(18,167),(19,168),(20,141),(21,142),(22,143),(23,144),(24,145),(25,146),(26,147),(27,148),(28,149),(29,216),(30,217),(31,218),(32,219),(33,220),(34,221),(35,222),(36,223),(37,224),(38,197),(39,198),(40,199),(41,200),(42,201),(43,202),(44,203),(45,204),(46,205),(47,206),(48,207),(49,208),(50,209),(51,210),(52,211),(53,212),(54,213),(55,214),(56,215),(57,136),(58,137),(59,138),(60,139),(61,140),(62,113),(63,114),(64,115),(65,116),(66,117),(67,118),(68,119),(69,120),(70,121),(71,122),(72,123),(73,124),(74,125),(75,126),(76,127),(77,128),(78,129),(79,130),(80,131),(81,132),(82,133),(83,134),(84,135),(85,191),(86,192),(87,193),(88,194),(89,195),(90,196),(91,169),(92,170),(93,171),(94,172),(95,173),(96,174),(97,175),(98,176),(99,177),(100,178),(101,179),(102,180),(103,181),(104,182),(105,183),(106,184),(107,185),(108,186),(109,187),(110,188),(111,189),(112,190)]])

280 conjugacy classes

class 1 2A···2G2H···2O4A···4H4I···4X7A···7F14A···14AP14AQ···14CL28A···28AV28AW···28EN
order12···22···24···44···47···714···1414···1428···2828···28
size11···12···21···12···21···11···12···21···12···2

280 irreducible representations

dim11111111111111112222
type++++++++
imageC1C2C2C2C2C2C2C4C7C14C14C14C14C14C14C28D4C4○D4C7×D4C7×C4○D4
kernelD4×C2×C28C2×C4×C28C14×C22⋊C4C14×C4⋊C4D4×C28C23×C28D4×C2×C14D4×C14C2×C4×D4C2×C42C2×C22⋊C4C2×C4⋊C4C4×D4C23×C4C22×D4C2×D4C2×C28C2×C14C2×C4C22
# reps112182116661264812696442424

Matrix representation of D4×C2×C28 in GL4(𝔽29) generated by

1000
02800
0010
0001
,
12000
02800
00190
00019
,
1000
02800
00127
00128
,
1000
0100
0010
00128
G:=sub<GL(4,GF(29))| [1,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,28,0,0,0,0,19,0,0,0,0,19],[1,0,0,0,0,28,0,0,0,0,1,1,0,0,27,28],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,28] >;

D4×C2×C28 in GAP, Magma, Sage, TeX

D_4\times C_2\times C_{28}
% in TeX

G:=Group("D4xC2xC28");
// GroupNames label

G:=SmallGroup(448,1298);
// by ID

G=gap.SmallGroup(448,1298);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1568,1597,1192]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽